-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.cpp
907 lines (787 loc) · 32.8 KB
/
main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
#include<iostream>
#include<map>
#include<fstream>
#include<vector>
#include<utility>
#include<set>
#include<unordered_set>
#include<algorithm>
#include<random>
#include<numeric>
#include<getopt.h>
#include<mpi.h>
#include<omp.h>
#include<cmath>
#include<queue>
#include <unordered_map>
class Graph{
public:
int n, m ; // number of nodes and edges
std::vector<std::unordered_set<int>> adj_list ;
std::vector<std::unordered_set<int>> adj_list_future ;
std::vector<int> degree ; // degree for each vertex, decrement if edge is deleted
std::vector<bool> my_node ;
std::vector<bool> my_neighbours ;
std::vector<int> prio ; //priority of the node to determine ordering
std::map<std::pair<int,int>, int> support_cnt ;
std::vector<int> dsu_parent ;
std::vector<int> dsu_rank ;
std::vector<std::vector<int>> grp_rep_to_members;
std::vector<omp_lock_t> v_lock ;
Graph(){
n = 0 ;
m = 0 ;
};
Graph(int n, int m){
this -> n = n ;
this -> m = m ;
this -> adj_list = std::vector<std::unordered_set<int>>(n); // adjaceny list assuming 0 ... n-1 numbering
this -> adj_list_future = std::vector<std::unordered_set<int>>(n);
this -> degree = std::vector<int>(n,0) ;
this -> my_node = std::vector<bool>(n,false) ;
this -> my_neighbours = std::vector<bool>(n,false) ;
this -> prio = std::vector<int>(n) ;
this -> dsu_parent = std::vector<int>(n,-1) ;
this -> dsu_rank = std::vector<int>(n, 1) ;
this -> grp_rep_to_members = std::vector<std::vector<int>>(n);
this -> v_lock = std::vector<omp_lock_t>(n);
for(int i = 0 ; i < n ; i ++ )
{
omp_init_lock(&v_lock[i]) ;
}
} ;
inline bool order(int x, int y){
// is x < y
return prio[x] < prio[y] || (prio[x] == prio[y] and x < y);
}
inline void add_edge( int i, int j, bool myNode = true)
{
// i --> j edge added
adj_list[i].insert(j) ;
degree[i] ++ ; // degree of j will be incremented when j --> i is added
if(myNode) my_node[i] = true ;
}
void prefilterp(int k, int& rank, int& num_procs)
{
// maintains my graph and my neighbour graph
std::set<int> to_be_deleted ;
std::set<int> send_to_master_set ;
int nodes_with_larger_seg_size = n % num_procs ;
int smaller_seg_size = (n/num_procs) ;
int larger_seg_size = smaller_seg_size+1;
int start_i = (rank < nodes_with_larger_seg_size ? rank*larger_seg_size : (nodes_with_larger_seg_size*larger_seg_size)+ (rank-nodes_with_larger_seg_size)*smaller_seg_size );
int end_i = start_i + (rank < nodes_with_larger_seg_size ? larger_seg_size : smaller_seg_size);
while(true)
{
// iterate over my nodes
for( int node = start_i ; node < end_i ; node ++ )
{
if(degree[node] < k-1 and degree[node] > 0 ) {
to_be_deleted.insert(node) ;
send_to_master_set.insert(node) ;
}
}
while(to_be_deleted.size()>0)
{
// delete this node, dequeue from to_be_deleted list
int node = *to_be_deleted.begin();
to_be_deleted.erase(to_be_deleted.begin());
for(auto nbr : adj_list[node])
{
// update adj list of neighbor
if(my_node[nbr])
{
if(adj_list[nbr].find(node) != adj_list[nbr].end()){
adj_list[nbr].erase(node);
degree[nbr]--;
}
if(degree[nbr] < k-1) {
to_be_deleted.insert(nbr) ; // nbr not already deleted
send_to_master_set.insert(nbr) ;
}
}
}
//remove node from my graph
adj_list[node].clear();
degree[node] = 0;
}
// share to master
std::vector<int> recv_deleted_nodes, recv_counts(num_procs), displs(num_procs);
int my_size = send_to_master_set.size();
MPI_Allgather(&my_size, 1, MPI_INT, &recv_counts[0], 1, MPI_INT, MPI_COMM_WORLD);
int tot_recvs = 0;
for (int i = 0; i < num_procs; i++) {
displs[i] = tot_recvs;
tot_recvs += recv_counts[i];
}
recv_deleted_nodes.resize(tot_recvs);
//exit condition
if(tot_recvs == 0) break;
std::vector<int> send_to_master(send_to_master_set.begin(), send_to_master_set.end());
MPI_Allgatherv(&send_to_master[0], my_size, MPI_INT, &recv_deleted_nodes[0], &recv_counts[0], &displs[0], MPI_INT, MPI_COMM_WORLD);
for(auto deleted_node : recv_deleted_nodes){
if(my_neighbours[deleted_node]){
for(auto ele : adj_list[deleted_node]){
if(my_node[ele]){
adj_list[ele].erase(deleted_node);
degree[ele] = adj_list[ele].size();
}
}
}
}
send_to_master.clear() ;
send_to_master_set.clear() ;
to_be_deleted.clear() ;
}
}
inline void find_common_neighbours(int x, int y, std::vector<int>&nbrs)
{
if(adj_list[x].size() > adj_list[y].size()) std::swap(x,y) ;
for(auto &ele : adj_list[x])
{
if(adj_list[y].count(ele)) nbrs.push_back(ele) ;
}
return ;
}
void ktrussp(int k, int& rank, int& num_procs)
{
// maintaints my graph and my neighbour graphs
std::vector<int> send_to_master_array;
std::vector<std::pair<int, int>> deleted_edges;
int nodes_with_larger_seg_size = n % num_procs ;
int smaller_seg_size = (n/num_procs) ;
int larger_seg_size = smaller_seg_size+1;
int start_i = (rank < nodes_with_larger_seg_size ? rank*larger_seg_size : (nodes_with_larger_seg_size*larger_seg_size)+ (rank-nodes_with_larger_seg_size)*smaller_seg_size );
int end_i = start_i + (rank < nodes_with_larger_seg_size ? larger_seg_size : smaller_seg_size);
// INitialize support count for my edges
bool first_time = support_cnt.empty() ; // haven't computed support count of my edges
#pragma omp parallel for
for(int node = start_i ; node < end_i ; node++)
{
// std::cout << omp_get_thread_num() << "\n" ;
for(auto nbr : adj_list[node])
{
if(order(node, nbr))
{
// my edge, compute and store support count
if(first_time)
{
std::vector<int> nbrs ; find_common_neighbours(node,nbr,nbrs) ;
int common_neighbours_cnt = nbrs.size() ;
#pragma omp critical
support_cnt[{node,nbr}] = common_neighbours_cnt ; // node < nbr
}
#pragma omp critical
if(support_cnt[{node,nbr}] < k-2 ) // if i iterate over an edge it will not be deleted no need to check for deleted
{
send_to_master_array.push_back(node) ; send_to_master_array.push_back(nbr) ;
}
}
}
}
std::vector<int> recv_counts(num_procs);
std::vector<int> displs(num_procs);
bool flag = true;
#pragma omp parallel shared(flag)
{
flag = true ;
int tid = omp_get_thread_num();
while(flag)
{
#pragma omp barrier
// communicated edges
if(tid == 0 )
{
int my_size = send_to_master_array.size();
MPI_Allgather(&my_size, 1, MPI_INT, &recv_counts[0], 1, MPI_INT, MPI_COMM_WORLD);
int tot_recvs = 0;
for (int i = 0; i < num_procs; i++) {
displs[i] = tot_recvs;
tot_recvs += recv_counts[i];
}
if(tot_recvs == 0){
flag = false ;
}
std::vector<int> recv_deleted_edges(tot_recvs);
MPI_Allgatherv(&send_to_master_array[0], my_size, MPI_INT, &recv_deleted_edges[0], &recv_counts[0], &displs[0], MPI_INT, MPI_COMM_WORLD);
deleted_edges.clear();
// #pragma omp parallel for
for(int i = 0; i < tot_recvs; i+=2){ // use displs
int x = recv_deleted_edges[i], y = recv_deleted_edges[i+1];
if(!my_node[x] and !my_node[y] and !my_neighbours[x] and !my_neighbours[y]) continue;
// #pragma omp critical
deleted_edges.push_back({x, y});
}
send_to_master_array.clear() ;
recv_deleted_edges.clear() ;
}
#pragma omp barrier
#pragma omp for
for(int i = 0 ; i < deleted_edges.size() ; i++)
{
int x = deleted_edges[i].first, y = deleted_edges[i].second;
#pragma omp critical
{
omp_set_lock(&v_lock[x]);
omp_set_lock(&v_lock[y]);
}
degree[x] -- ; degree[y] -- ;
adj_list[x].erase(y) ; adj_list[y].erase(x) ;
//update support counts
std::vector<int> support_nbrs; find_common_neighbours(x, y, support_nbrs);
omp_unset_lock(&v_lock[x]);
omp_unset_lock(&v_lock[y]);
for(auto support_nbr : support_nbrs){
int max_node, min_node ;
// process the edge (x, support_nbr);
if(order(x,support_nbr)){
max_node = support_nbr ;
min_node = x ;
}else{
max_node = x;
min_node = support_nbr ;
}
if(my_node[min_node])
{
// my_edge
#pragma omp critical
{
int supp_cnt = --support_cnt[{min_node, max_node}] ;
// delete edge if already not deleted
if( supp_cnt == k-3 )
{
send_to_master_array.push_back(min_node) ; send_to_master_array.push_back(max_node);
}
}
}
// process the edge (y,support_nbr) ;
if(order(y,support_nbr)){
max_node = support_nbr ;
min_node = y ;
}else{
max_node = y;
min_node = support_nbr ;
}
if(my_node[min_node])
{
// my_edge
#pragma omp critical
{
int supp_cnt = --support_cnt[{min_node, max_node}] ;
// delete edge if already not deleted
if( supp_cnt == k-3 )
{
send_to_master_array.push_back(min_node) ; send_to_master_array.push_back(max_node);
}
}
}
}
}
}
}
}
inline bool any_edge_exists()
{
for( int i = 0 ; i < n ; i ++ )
{
if(my_node[i] and adj_list[i].size()>0) return true ;
}
return false ;
}
inline void make_copy(){
adj_list_future = adj_list;
}
int find_dsu_parent(int node, std::vector<int>&dsu_array)
{
// node is root if its parent is -1
if(dsu_array[node] == -1)
{
// root
return node ;
}
// path compression
return dsu_array[node] = find_dsu_parent(dsu_array[node], dsu_array) ;
}
void dsu_union(int i, int j, std::vector<int>&dsu_array)
{
int par_i = find_dsu_parent(i, dsu_array), par_j = find_dsu_parent(j, dsu_array) ;
if(par_i == par_j)
{
return ;
}
// union by rank
if (dsu_rank[par_j] < dsu_rank[par_i]){
std::swap(par_i, par_j);
}
dsu_array[par_i] = par_j ;
dsu_rank[par_j] += dsu_rank[par_i];
return ;
}
void dsu(int rank, int num_procs)
{
this->dsu_parent = std::vector<int>(n,-1);
int nodes_with_larger_seg_size = n % num_procs ;
int smaller_seg_size = (n/num_procs) ;
int larger_seg_size = smaller_seg_size+1;
int my_seg_size = rank < nodes_with_larger_seg_size ? larger_seg_size : smaller_seg_size;
int seg_offset = (rank < nodes_with_larger_seg_size ? rank*larger_seg_size : (nodes_with_larger_seg_size*larger_seg_size)+ (rank-nodes_with_larger_seg_size)*smaller_seg_size );
for( int i = seg_offset ; i < seg_offset + my_seg_size ; i ++ )
{
// my nodes
for(auto nbr : adj_list[i])
{
dsu_union(i, nbr, dsu_parent) ;
}
}
}
void synch_dsu(int rank, int num_procs)
{
// find dsu_parent array of my own graph
dsu(rank, num_procs) ;
if(num_procs == 1) return ;
// 0 -> 1 .... -> n-1
if(rank == 0)
{
// only send
MPI_Send(&dsu_parent[0], n, MPI_INT, rank+1, 0, MPI_COMM_WORLD);
}else if(rank < num_procs-1 ){
// receive
std::vector<int> nbr_dsu_parent(n);
MPI_Recv(&nbr_dsu_parent[0], n, MPI_INT, rank-1, 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE) ;
// join
for( int i = 0 ; i < n ; i ++ )
{
if(nbr_dsu_parent[i] != -1)
dsu_union(i, find_dsu_parent(i, nbr_dsu_parent), dsu_parent);
}
// send
MPI_Send(&dsu_parent[0], n, MPI_INT, rank+1, 0, MPI_COMM_WORLD);
}else{
// last node
// receive
std::vector<int> nbr_dsu_parent(n);
MPI_Recv(&nbr_dsu_parent[0], n, MPI_INT, rank-1, 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE) ;
// join
for( int i = 0 ; i < n ; i ++ )
{
if(nbr_dsu_parent[i] != -1)
dsu_union(i, find_dsu_parent(i, nbr_dsu_parent), dsu_parent);
}
}
}
void find_groups()
{
for(int i = 0 ; i < n ; i ++ )
{
int grp_rep = find_dsu_parent(i, dsu_parent);
grp_rep_to_members[grp_rep].push_back(i) ;
}
}
std::pair<int,int> connected_components(std::unordered_map<int, std::vector<int>> &cc_s)
{
for(int i = 0 ; i < n ; i ++ )
{
cc_s[find_dsu_parent(i, dsu_parent)].push_back(i) ;
}
int cnt=0, one_cnt = 0;
for(auto pr : cc_s)
{
if(pr.second.size() > 1) cnt ++ ;
else one_cnt ++ ;
}
return {cnt, one_cnt} ;
}
void task2(int& rank, int& num_procs, int& p, std::string& outputpath, int verbose){
// give the dsu arrays for the entire graph from the last node to all nodes
MPI_Bcast(&dsu_parent[0], n, MPI_INT, num_procs-1, MPI_COMM_WORLD);
MPI_Bcast(&dsu_rank[0], n, MPI_INT, num_procs-1, MPI_COMM_WORLD);
int nodes_with_larger_seg_size = n % num_procs ;
int smaller_seg_size = (n/num_procs) ;
int larger_seg_size = smaller_seg_size+1;
int my_seg_size = rank < nodes_with_larger_seg_size ? larger_seg_size : smaller_seg_size;
int seg_offset = (rank < nodes_with_larger_seg_size ? rank*larger_seg_size : (nodes_with_larger_seg_size*larger_seg_size)+ (rank-nodes_with_larger_seg_size)*smaller_seg_size );
std::vector<std::unordered_set<int>> grp_reps(my_seg_size);
// iterate on my nodes
#pragma omp parallel for
for( int i = seg_offset ; i < seg_offset + my_seg_size ; i ++){
// use the original edges
for(auto nbr : adj_list_future[i]){
int pr = find_dsu_parent(nbr, dsu_parent);
// if neighbour is not an isloted k-truss
if(dsu_rank[pr] > 1){
grp_reps[i-seg_offset].insert(pr);
}
}
}
int cnt = 0, cnt_sum = 0;
for(auto se : grp_reps){
if(se.size() >= p) {
cnt++ ;
}
}
MPI_Reduce(&cnt, &cnt_sum, 1, MPI_INT, MPI_SUM, 0, MPI_COMM_WORLD);
std::ofstream fw;
if(rank == 0){
fw.open(outputpath, std::ios::app);
fw << cnt_sum << "\n";
fw.close();
}
// find group rep ==> group needed for verbose 0
if(verbose == 1) find_groups();
if(rank == 0){
fw.open(outputpath, std::ios::app);
//write
int token = 1;
for( int i = seg_offset ; i < seg_offset + my_seg_size ; i ++){
if(grp_reps[i-seg_offset].size() >= p)
{
if(verbose == 0) fw << i << " ";
else if(verbose==1)
{
fw << i << "\n" ;
// print all vertices of neighbouring groups
for(auto rep : grp_reps[i-seg_offset])
{
for(auto member : grp_rep_to_members[rep]) fw << member << " " ;
}
fw << "\n";
}
}
}
fw.close();
if(num_procs == 1) return;
MPI_Send(&token, 1, MPI_INT, rank + 1, 0, MPI_COMM_WORLD);
}
else if (rank < num_procs){
int token = 1;
MPI_Recv(&token, 1, MPI_INT, rank - 1, 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
fw.open(outputpath, std::ios::app);
for(int i = seg_offset ; i < seg_offset + my_seg_size ; i ++){
if(grp_reps[i-seg_offset].size() >= p)
{
if(verbose == 0) fw << i << " ";
else if(verbose==1)
{
fw << i << "\n" ;
// print all vertices of neighbouring groups
for(auto rep : grp_reps[i-seg_offset])
{
for(auto member : grp_rep_to_members[rep]) fw << member << " " ;
}
fw << "\n";
}
}
}
fw.close();
if(rank != num_procs-1) MPI_Send(&token, 1, MPI_INT, rank + 1, 0, MPI_COMM_WORLD);
}
}
};
void read_filep(const char* inpfile, const char* offsetfile, Graph& g, int& rank, int& num_procs){
// reads graph corresponding to my own nodes only
MPI_File inps;
MPI_File_open(MPI_COMM_WORLD, inpfile, MPI_MODE_RDONLY, MPI_INFO_NULL, &inps);
MPI_File offsets;
MPI_File_open(MPI_COMM_WORLD, offsetfile, MPI_MODE_RDONLY, MPI_INFO_NULL, &offsets);
int ints[2]; // (n, m) i.e. num_vertices, num_edges
if(rank == 0){
//reading n, m
MPI_File_read(inps, ints, 2, MPI_INT, MPI_STATUS_IGNORE);
}
MPI_Bcast(ints, 2, MPI_INT, 0, MPI_COMM_WORLD);
g = Graph(ints[0], ints[1]);
int nodes_with_larger_seg_size = ints[0] % num_procs ;
int smaller_seg_size = (ints[0]/num_procs) ;
int larger_seg_size = smaller_seg_size+1;
int my_seg_size = rank < nodes_with_larger_seg_size ? larger_seg_size : smaller_seg_size;
int seg_offset = (rank < nodes_with_larger_seg_size ? rank*larger_seg_size : (nodes_with_larger_seg_size*larger_seg_size)+ (rank-nodes_with_larger_seg_size)*smaller_seg_size );
int* my_offsets = (int*) malloc(sizeof(int) * my_seg_size);
MPI_File_read_at_all(offsets, seg_offset * sizeof(int), my_offsets, my_seg_size, MPI_INT, MPI_STATUS_IGNORE);
MPI_Offset offset;
std::vector<int> my_degrees(my_seg_size);
for(int i = 0; i < my_seg_size; i++){
int off = my_offsets[i];
MPI_File_seek(inps, off, MPI_SEEK_SET);
MPI_File_read(inps, ints, 2, MPI_INT, MPI_STATUS_IGNORE); //inps now have i, deg(i)
my_degrees[i] = ints[1]; //storing my degree;
int* node_info = (int*) malloc(sizeof(int) * ints[1]);
MPI_File_read(inps, node_info, ints[1], MPI_INT, MPI_STATUS_IGNORE);
for(int j = 0; j < ints[1]; j++) {
g.add_edge(ints[0], node_info[j], true); // my own node, degree of my node and its adjacency list will be updated
}
}
std::vector<int> recv_counts(num_procs);
std::vector<int> displs(num_procs);
int tot_recvs = 0;
for (int i = 0; i < num_procs; i++) {
recv_counts[i] = (i < nodes_with_larger_seg_size ? larger_seg_size : smaller_seg_size);
displs[i] = tot_recvs;
tot_recvs += recv_counts[i];
}
MPI_Allgatherv(&my_degrees[0], my_seg_size, MPI_INT, &g.prio[0], &recv_counts[0], &displs[0], MPI_INT, MPI_COMM_WORLD);
MPI_File_close(&inps);
MPI_File_close(&offsets);
g.make_copy();
return;
}
void read_cl_arguments(int argc, char *argv[], int &taskid, std::string &inputpath, std::string &headerpath, std::string &outputpath, int &verbose, int &startk, int &endk, int &p )
{
static struct option long_options[] = {
{"taskid", required_argument, 0, 't'},
{"inputpath", required_argument, 0, 'i'},
{"headerpath", required_argument, 0, 'h'},
{"outputpath", required_argument, 0, 'o'},
{"verbose", required_argument, 0, 'v'},
{"startk", required_argument, 0, 's'},
{"endk", required_argument, 0, 'e'},
{"p", required_argument, 0, 'p'},
{0, 0, 0, 0}
};
// Parse the command-line arguments
int option_index = 0;
int c;
while ((c = getopt_long(argc, argv, "t:i:h:o:v:s:e:p:", long_options, &option_index)) != -1) {
switch (c) {
case 't':
taskid = atoi(optarg);
break;
case 'i':
inputpath = optarg;
break;
case 'h':
headerpath = optarg;
break;
case 'o':
outputpath = optarg;
break;
case 'v':
verbose = atoi(optarg);
break;
case 's':
startk = atoi(optarg);
break;
case 'e':
endk = atoi(optarg);
break;
case 'p':
p = atoi(optarg);
break;
case '?':
std::cerr << "Invalid command-line argument" << std::endl;
exit(EXIT_FAILURE);
}
}
}
void get_neighbour_graph(Graph &g, int rank, int num_procs)
{
// information exchange between all processors
// eventually each process will receive all edges of neighbours its own nodes
int n = g.n ;
int nodes_with_larger_seg_size = n % num_procs ;
int smaller_seg_size = (n/num_procs) ;
int larger_seg_size = smaller_seg_size+1;
int my_seg_size = rank < nodes_with_larger_seg_size ? larger_seg_size : smaller_seg_size;
int seg_offset = (rank < nodes_with_larger_seg_size ? rank*larger_seg_size : (nodes_with_larger_seg_size*larger_seg_size)+ (rank-nodes_with_larger_seg_size)*smaller_seg_size );
std::vector<std::vector<int>> temp_adj_list(n);
// ITERATE OVER MY NODES
for(int i = seg_offset ; i < seg_offset + my_seg_size ; i ++ )
{
for(auto ele : g.adj_list[i])
{
temp_adj_list[i].push_back(ele) ;
if(!g.my_node[ele]) { // NEIGHBOUR BUT NOT MY NODE
g.my_neighbours[ele] = true;
}
}
}
int size_of_adj_list ;
// iterate over all processes
for( int rank_of_process = 0 ; rank_of_process < num_procs ; rank_of_process ++ )
{
// iterate over all nodes of a process
int start_i = (rank_of_process < nodes_with_larger_seg_size ? rank_of_process*larger_seg_size : (nodes_with_larger_seg_size*larger_seg_size)+ (rank_of_process-nodes_with_larger_seg_size)*smaller_seg_size );
int end_i = start_i + (rank_of_process < nodes_with_larger_seg_size ? larger_seg_size : smaller_seg_size);
for(int i = start_i ; i < end_i ; i ++ )
{
if(rank == rank_of_process){
// my node (node of the process itself)
size_of_adj_list = temp_adj_list[i].size() ;
}
MPI_Bcast(&size_of_adj_list, 1, MPI_INT, rank_of_process, MPI_COMM_WORLD) ;
temp_adj_list[i].resize(size_of_adj_list) ;
MPI_Bcast(&temp_adj_list[i][0], size_of_adj_list, MPI_INT, rank_of_process, MPI_COMM_WORLD) ;
if(rank != rank_of_process and g.my_neighbours[i])
{
// not my node but my neighbour => add to graph
g.adj_list[i].clear() ;
g.degree[i] = 0 ;
for(auto ele : temp_adj_list[i])
{
g.add_edge(i, ele, false) ; // not my node
}
}
}
}
}
void send_graph_to_last_node(Graph &g, int rank, int num_procs)
{
int n = g.n ;
int nodes_with_larger_seg_size = n % num_procs ;
int smaller_seg_size = (n/num_procs) ;
int larger_seg_size = smaller_seg_size+1;
int my_seg_size = rank < nodes_with_larger_seg_size ? larger_seg_size : smaller_seg_size;
int seg_offset = (rank < nodes_with_larger_seg_size ? rank*larger_seg_size : (nodes_with_larger_seg_size*larger_seg_size)+ (rank-nodes_with_larger_seg_size)*smaller_seg_size );
if(rank != num_procs-1)
{
// send adj list
// iterate over my nodes and send them
for(int i = seg_offset ; i < seg_offset + my_seg_size ; i++)
{
std::vector<int>temp_adj_list ;
for(auto ele : g.adj_list[i])
{
temp_adj_list.push_back(ele) ;
}
int adj_list_size = temp_adj_list.size() ;
MPI_Send(&adj_list_size, 1, MPI_INT, num_procs-1, 0, MPI_COMM_WORLD) ;
MPI_Send(&temp_adj_list[0], adj_list_size, MPI_INT, num_procs-1, 0, MPI_COMM_WORLD) ;
}
}else{
// recv adj list
for(int rank_sender = 0 ; rank_sender < num_procs - 1 ; rank_sender ++ )
{
int sender_size = rank_sender < nodes_with_larger_seg_size ? larger_seg_size : smaller_seg_size;
int sender_offset = (rank_sender < nodes_with_larger_seg_size ? rank_sender*larger_seg_size : (nodes_with_larger_seg_size*larger_seg_size)+ (rank_sender-nodes_with_larger_seg_size)*smaller_seg_size );
for(int i = sender_offset ; i < sender_size + sender_offset ; i ++ )
{
// not my node receive their adj_list
int adj_list_size;
std::vector<int>temp_adj_list ;
MPI_Status status ;
MPI_Recv(&adj_list_size, 1, MPI_INT, rank_sender, 0, MPI_COMM_WORLD, &status) ;
temp_adj_list.resize(adj_list_size) ;
MPI_Recv(&temp_adj_list[0], adj_list_size, MPI_INT, rank_sender, 0, MPI_COMM_WORLD, &status) ;
g.adj_list[i].clear() ;
g.degree[i] = 0 ;
for(auto ele : temp_adj_list)
{
g.add_edge(i, ele, false) ; // not my node
}
}
}
}
}
bool gather_edge_exists_at_last_node(Graph &g, int rank, int num_procs)
{
int edge_exists = g.any_edge_exists() ;
bool answer = edge_exists ;
if(num_procs == 1) return answer ;
int* recv_buff = NULL ;
if(rank == num_procs-1) recv_buff = new int[num_procs] ;
MPI_Gather(&edge_exists, 1, MPI_INT, recv_buff, 1, MPI_INT, num_procs-1, MPI_COMM_WORLD) ;
if(rank == num_procs-1)
{
for(int i = 0 ; i < num_procs ; i ++ )
{
if(recv_buff[i]) answer = true ;
if(answer) break ;
}
delete[] recv_buff ;
}
return answer ;
}
int main(int argc, char *argv[])
{
int rank, size;
MPI_Status status;
// Initialize MPI
int provided , required = MPI_THREAD_MULTIPLE ;
MPI_Init_thread(&argc, &argv, required, &provided);
if (provided < required) {
printf("MPI_Init_thread failed to provide the required thread support level\n");
MPI_Abort(MPI_COMM_WORLD, 1);
}
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);
// set number of threads for openMP
int taskid = -1, verbose=-1, startk=-1, endk=-1, p=-1 ;
int num_threads = size/2 ;
if(num_threads <= 0 ) num_threads = 1 ;
std::string inputpath, headerpath, outputpath;
read_cl_arguments(argc, argv, taskid, inputpath, headerpath, outputpath, verbose, startk, endk, p) ;
omp_set_num_threads(num_threads);
Graph g ;
// read only my graph
read_filep(inputpath.c_str(), headerpath.c_str(), g, rank, size);
get_neighbour_graph(g, rank, size) ;
std::ofstream fw(outputpath) ;
bool zero_found = false, edge_exists = false;
if(taskid == 1){
for(int i = startk+2 ; i <= endk+2 ; i ++ )
{
// MAINTAINS MY AND MY NEIGHBOURS GRAPH AND DELETES ALL POSSIBLE EDGES
// only do this if zero not found i.e. graph still connected
if(not zero_found){
g.prefilterp(startk + 2, rank, size) ;
g.ktrussp(i, rank, size);
// if(!verbose) edge_exists = gather_edge_exists_at_last_node(g, rank, size) ; // less effort for non verbose
// else send_graph_to_last_node(g, rank, size) ;
if(!verbose) edge_exists = gather_edge_exists_at_last_node(g, rank, size) ; // less effort for non verbose
else g.synch_dsu(rank, size) ;
}
// only one process prints zero
if(zero_found)
{
if(rank == size-1 && verbose) fw << 0 << "\n" ;
if(rank == size-1 && !verbose) fw << 0 << " " ;
continue ;
}
// zero not found 1 process checks connected components
std::unordered_map<int, std::vector<int>> connected_components ; // stores all connected components
std::pair<int,int> cc_cnt = std::make_pair(0,0);
if(rank == size-1)
{
if(!verbose)
{
cc_cnt.first = edge_exists ; // only check if edge exists
}else{
cc_cnt = g.connected_components(connected_components) ; // have to find cc
}
zero_found = (cc_cnt.first==0 ? true : false ) ;
}
// broadcast whether zero found or not
MPI_Bcast(&zero_found, 1, MPI_BYTE, size-1, MPI_COMM_WORLD) ;
if(rank != size-1) continue ; // last node prints
if(verbose) fw << (cc_cnt.first ? 1 : 0 ) << "\n" ;
if(!verbose) fw << (cc_cnt.first ? 1 : 0 ) << " " ;
if(verbose)
{
if(cc_cnt.first ) fw << cc_cnt.first << "\n" ;
for(auto &cc : connected_components)
{
sort(cc.second.begin(), cc.second.end()) ;
if(cc.second.size()>1)
{
for(int i = 0 ; i < (int)cc.second.size() ; i ++ )
{
fw << cc.second[i] ;
if(i != (int)cc.second.size()-1) fw << " " ;
else fw << "\n" ;
}
}
}
}
}
if(!verbose && rank==size-1) fw << "\n" ;
fw.close() ;
}
if(taskid == 2){
// everybody now has the dsu array of the entire graph
g.prefilterp(endk + 2, rank, size) ;
g.ktrussp(endk + 2, rank, size);
g.synch_dsu(rank, size);
g.task2(rank, size, p, outputpath, verbose);
}
MPI_Finalize();
return 0 ;
}