1
+ {
2
+ "nbformat" : 4 ,
3
+ "nbformat_minor" : 0 ,
4
+ "metadata" : {
5
+ "colab" : {
6
+ "provenance" : [],
7
+ "collapsed_sections" : [],
8
+ "authorship_tag" : " ABX9TyN7ZUg62afIuPWZjGbBV9eF" ,
9
+ "include_colab_link" : true
10
+ },
11
+ "kernelspec" : {
12
+ "name" : " python3" ,
13
+ "display_name" : " Python 3"
14
+ },
15
+ "language_info" : {
16
+ "name" : " python"
17
+ }
18
+ },
19
+ "cells" : [
20
+ {
21
+ "cell_type" : " markdown" ,
22
+ "metadata" : {
23
+ "id" : " view-in-github" ,
24
+ "colab_type" : " text"
25
+ },
26
+ "source" : [
27
+ " <a href=\" https://colab.research.google.com/github/DeepthiTabithaBennet/Python_AppliedStatistics/blob/main/Mean_Median_Mode.ipynb\" target=\" _parent\" ><img src=\" https://colab.research.google.com/assets/colab-badge.svg\" alt=\" Open In Colab\" /></a>"
28
+ ]
29
+ },
30
+ {
31
+ "cell_type" : " markdown" ,
32
+ "metadata" : {
33
+ "id" : " MteebtjDu5rU"
34
+ },
35
+ "source" : [
36
+ " **Central Tendency of Data**"
37
+ ]
38
+ },
39
+ {
40
+ "cell_type" : " code" ,
41
+ "metadata" : {
42
+ "id" : " JdiuOctquOSx"
43
+ },
44
+ "source" : [
45
+ " # Written by Deepthi Tabitha Bennet\n " ,
46
+ " \n " ,
47
+ " import numpy as np\n " ,
48
+ " import statistics\n " ,
49
+ " import math"
50
+ ],
51
+ "execution_count" : null ,
52
+ "outputs" : []
53
+ },
54
+ {
55
+ "cell_type" : " code" ,
56
+ "metadata" : {
57
+ "colab" : {
58
+ "base_uri" : " https://localhost:8080/"
59
+ },
60
+ "id" : " tvJLKIV28Wbq" ,
61
+ "outputId" : " ddbf4ccf-3c90-4486-dcda-c156684e4247"
62
+ },
63
+ "source" : [
64
+ " data = np.array([1,2,4,9,6,3,2,4,6,9,0,8,9,5,3,5,8,5,4,9])\n " ,
65
+ " Data = [1,2,4,9,6,3,2,4,6,9,0,8,9,5,3,5,8,5,4,9]\n " ,
66
+ " sum = data.sum()\n " ,
67
+ " print(sum)"
68
+ ],
69
+ "execution_count" : null ,
70
+ "outputs" : [
71
+ {
72
+ "output_type" : " stream" ,
73
+ "name" : " stdout" ,
74
+ "text" : [
75
+ " 102\n "
76
+ ]
77
+ }
78
+ ]
79
+ },
80
+ {
81
+ "cell_type" : " markdown" ,
82
+ "metadata" : {
83
+ "id" : " S_WThNZ-x_Zz"
84
+ },
85
+ "source" : [
86
+ " **Mean**"
87
+ ]
88
+ },
89
+ {
90
+ "cell_type" : " code" ,
91
+ "metadata" : {
92
+ "id" : " 9LkiFMOkyA0k" ,
93
+ "colab" : {
94
+ "base_uri" : " https://localhost:8080/"
95
+ },
96
+ "outputId" : " e5f27fed-8073-4e69-ed25-449dcb5b0af7"
97
+ },
98
+ "source" : [
99
+ " # Without using Libraries\n " ,
100
+ " mean1 = sum // len(data)\n " ,
101
+ " print(mean1)\n " ,
102
+ " \n " ,
103
+ " # Using Libraries\n " ,
104
+ " mean2 = statistics.mean(data)\n " ,
105
+ " print(mean2)"
106
+ ],
107
+ "execution_count" : null ,
108
+ "outputs" : [
109
+ {
110
+ "output_type" : " stream" ,
111
+ "name" : " stdout" ,
112
+ "text" : [
113
+ " 5\n " ,
114
+ " 5\n "
115
+ ]
116
+ }
117
+ ]
118
+ },
119
+ {
120
+ "cell_type" : " markdown" ,
121
+ "metadata" : {
122
+ "id" : " 2D2HPtJjygGj"
123
+ },
124
+ "source" : [
125
+ " **Median**"
126
+ ]
127
+ },
128
+ {
129
+ "cell_type" : " code" ,
130
+ "metadata" : {
131
+ "id" : " aL5CChrEyhQ7" ,
132
+ "colab" : {
133
+ "base_uri" : " https://localhost:8080/"
134
+ },
135
+ "outputId" : " a5762490-f4d3-4f2c-b518-6f7f2753c052"
136
+ },
137
+ "source" : [
138
+ " # Without using Libraries\n " ,
139
+ " n = len(data)\n " ,
140
+ " data.sort()\n " ,
141
+ " \n " ,
142
+ " if n % 2 == 0:\n " ,
143
+ " median1a = data[n//2]\n " ,
144
+ " median1b = data[n//2 - 1]\n " ,
145
+ " median1 = (median1a + median1b)/2\n " ,
146
+ " else:\n " ,
147
+ " median1 = data[n//2]\n " ,
148
+ " \n " ,
149
+ " print(median1)\n " ,
150
+ " \n " ,
151
+ " # Using Libraries\n " ,
152
+ " median2 = statistics.median(data)\n " ,
153
+ " print(median2)"
154
+ ],
155
+ "execution_count" : null ,
156
+ "outputs" : [
157
+ {
158
+ "output_type" : " stream" ,
159
+ "name" : " stdout" ,
160
+ "text" : [
161
+ " 5.0\n " ,
162
+ " 5.0\n "
163
+ ]
164
+ }
165
+ ]
166
+ },
167
+ {
168
+ "cell_type" : " markdown" ,
169
+ "metadata" : {
170
+ "id" : " xsapd9PQ1KLK"
171
+ },
172
+ "source" : [
173
+ " **Mode**"
174
+ ]
175
+ },
176
+ {
177
+ "cell_type" : " code" ,
178
+ "metadata" : {
179
+ "id" : " ajG-q6Nk1OIK" ,
180
+ "colab" : {
181
+ "base_uri" : " https://localhost:8080/"
182
+ },
183
+ "outputId" : " e3bfa02d-c764-44ec-9c6c-ba8d868a326f"
184
+ },
185
+ "source" : [
186
+ " # Without using Libraries\n " ,
187
+ " freq = {}\n " ,
188
+ " \n " ,
189
+ " for value in data:\n " ,
190
+ " freq[value] = freq.get(value, 0) + 1\n " ,
191
+ " \n " ,
192
+ " MostFreq = max(freq.values())\n " ,
193
+ " mode1 = [key for key, value in freq.items() if value == MostFreq]\n " ,
194
+ " \n " ,
195
+ " print(mode1[0])\n " ,
196
+ " \n " ,
197
+ " mode3 = max(data, key = Data.count)\n " ,
198
+ " print(mode3)\n " ,
199
+ " \n " ,
200
+ " # Using Libraries\n " ,
201
+ " mode2 = statistics.mode(data)\n " ,
202
+ " print(mode2)"
203
+ ],
204
+ "execution_count" : null ,
205
+ "outputs" : [
206
+ {
207
+ "output_type" : " stream" ,
208
+ "name" : " stdout" ,
209
+ "text" : [
210
+ " 9\n " ,
211
+ " 9\n " ,
212
+ " 9\n "
213
+ ]
214
+ }
215
+ ]
216
+ }
217
+ ]
218
+ }
0 commit comments