Skip to content

Commit 82829d0

Browse files
Created using Colaboratory
1 parent 2cd6dfd commit 82829d0

File tree

1 file changed

+204
-0
lines changed

1 file changed

+204
-0
lines changed

Multiple_Linear_Regression.ipynb

+204
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,204 @@
1+
{
2+
"nbformat": 4,
3+
"nbformat_minor": 0,
4+
"metadata": {
5+
"colab": {
6+
"provenance": [],
7+
"collapsed_sections": [],
8+
"authorship_tag": "ABX9TyPo1/jVmtDE9X+OTsJBXsvz",
9+
"include_colab_link": true
10+
},
11+
"kernelspec": {
12+
"name": "python3",
13+
"display_name": "Python 3"
14+
},
15+
"language_info": {
16+
"name": "python"
17+
}
18+
},
19+
"cells": [
20+
{
21+
"cell_type": "markdown",
22+
"metadata": {
23+
"id": "view-in-github",
24+
"colab_type": "text"
25+
},
26+
"source": [
27+
"<a href=\"https://colab.research.google.com/github/DeepthiTabithaBennet/Python_AppliedStatistics/blob/main/Multiple_Linear_Regression.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
28+
]
29+
},
30+
{
31+
"cell_type": "markdown",
32+
"metadata": {
33+
"id": "RmGFoV8P22AE"
34+
},
35+
"source": [
36+
"# **Multiple Linear Regression**"
37+
]
38+
},
39+
{
40+
"cell_type": "code",
41+
"metadata": {
42+
"id": "75W-ukM9p6LC"
43+
},
44+
"source": [
45+
"# Written by Deepthi Tabitha Bennet\n",
46+
"\n",
47+
"!pip install matplotlib\n",
48+
"!pip install sklearn\n",
49+
"!pip install LinearRegression\n",
50+
"\n",
51+
"import pandas as pd\n",
52+
"import numpy as np\n",
53+
"import matplotlib.pyplot as plt\n",
54+
"import seaborn as sns\n",
55+
"%matplotlib inline "
56+
],
57+
"execution_count": null,
58+
"outputs": []
59+
},
60+
{
61+
"cell_type": "code",
62+
"metadata": {
63+
"id": "YWyZDKvUvt94"
64+
},
65+
"source": [
66+
"raw_data = pd.read_csv('Housing_Data.csv')"
67+
],
68+
"execution_count": null,
69+
"outputs": []
70+
},
71+
{
72+
"cell_type": "code",
73+
"metadata": {
74+
"id": "_kQumzvYsv1Y"
75+
},
76+
"source": [
77+
"raw_data.info()"
78+
],
79+
"execution_count": null,
80+
"outputs": []
81+
},
82+
{
83+
"cell_type": "code",
84+
"metadata": {
85+
"id": "VGmvmAJusv6J"
86+
},
87+
"source": [
88+
"sns.pairplot(raw_data)"
89+
],
90+
"execution_count": null,
91+
"outputs": []
92+
},
93+
{
94+
"cell_type": "code",
95+
"metadata": {
96+
"id": "e-RE0_pmsv95"
97+
},
98+
"source": [
99+
"x = raw_data[['Avg. Area Income', 'Avg. Area House Age', 'Avg. Area Number of Rooms', 'Avg. Area Number of Bedrooms', 'Area Population']]\n",
100+
"y = raw_data['Price']"
101+
],
102+
"execution_count": null,
103+
"outputs": []
104+
},
105+
{
106+
"cell_type": "code",
107+
"metadata": {
108+
"id": "dCTLqMejvtlA"
109+
},
110+
"source": [
111+
"from sklearn.model_selection import train_test_split\n",
112+
"\n",
113+
"x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.3)"
114+
],
115+
"execution_count": null,
116+
"outputs": []
117+
},
118+
{
119+
"cell_type": "code",
120+
"metadata": {
121+
"id": "LtlnUPffvtt-"
122+
},
123+
"source": [
124+
"from sklearn.linear_model import LinearRegression\n",
125+
"\n",
126+
"model = LinearRegression()\n",
127+
"model.fit(x_train, y_train)"
128+
],
129+
"execution_count": null,
130+
"outputs": []
131+
},
132+
{
133+
"cell_type": "code",
134+
"metadata": {
135+
"id": "bCbrRU6hvt3O"
136+
},
137+
"source": [
138+
"print(model.coef_)\n",
139+
"print(model.intercept_)"
140+
],
141+
"execution_count": null,
142+
"outputs": []
143+
},
144+
{
145+
"cell_type": "code",
146+
"metadata": {
147+
"id": "-ngs8G_5vt6e"
148+
},
149+
"source": [
150+
"pd.DataFrame(model.coef_, x.columns, columns = ['Coeff'])"
151+
],
152+
"execution_count": null,
153+
"outputs": []
154+
},
155+
{
156+
"cell_type": "code",
157+
"metadata": {
158+
"id": "eVw4lndpC45e"
159+
},
160+
"source": [
161+
"predictions = model.predict(x_test)"
162+
],
163+
"execution_count": null,
164+
"outputs": []
165+
},
166+
{
167+
"cell_type": "code",
168+
"metadata": {
169+
"id": "PblNR_9BC5BQ"
170+
},
171+
"source": [
172+
"plt.scatter(y_test, predictions)"
173+
],
174+
"execution_count": null,
175+
"outputs": []
176+
},
177+
{
178+
"cell_type": "code",
179+
"metadata": {
180+
"id": "-3fxeEceC5Tf"
181+
},
182+
"source": [
183+
"plt.hist(y_test - predictions)"
184+
],
185+
"execution_count": null,
186+
"outputs": []
187+
},
188+
{
189+
"cell_type": "code",
190+
"metadata": {
191+
"id": "EI_gS2JfDFHO"
192+
},
193+
"source": [
194+
"from sklearn import metrics\n",
195+
"\n",
196+
"metrics.mean_absolute_error(y_test, predictions)\n",
197+
"metrics.mean_squared_error(y_test, predictions)\n",
198+
"np.sqrt(metrics.mean_squared_error(y_test, predictions))"
199+
],
200+
"execution_count": null,
201+
"outputs": []
202+
}
203+
]
204+
}

0 commit comments

Comments
 (0)