-
Notifications
You must be signed in to change notification settings - Fork 57
/
Copy pathbasic.py
580 lines (498 loc) · 30.4 KB
/
basic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
"""
Definitions of blocks of VAR transformer model.
"""
import math
import os
from functools import partial
from typing import Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from timm.models.layers import DropPath, drop_path
from torch.utils.checkpoint import checkpoint
# Import flash_attn's attention
from flash_attn import flash_attn_func # q, k, or v: BLHc, ret: BLHc
from flash_attn import flash_attn_varlen_kvpacked_func # qkv: N3Hc, ret: NHc
from torch.nn.functional import scaled_dot_product_attention as slow_attn # q, k, v: BHLc
# Import flash_attn's fused ops
try:
from flash_attn.ops.layer_norm import dropout_add_layer_norm
from flash_attn.ops.rms_norm import dropout_add_rms_norm
from flash_attn.ops.rms_norm import rms_norm as rms_norm_impl
from flash_attn.ops.fused_dense import fused_mlp_func
flash_fused_op_installed = True
except ImportError:
dropout_add_layer_norm = dropout_add_rms_norm = fused_mlp_func = None
flash_fused_op_installed = False
def rms_norm_impl(x, weight, epsilon):
return (x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True).add_(epsilon))) * weight
def precompute_rope2d_freqs_grid(dim, dynamic_resolution_h_w, rope2d_normalized_by_hw, pad_to_multiplier=1, max_height=2048 // 16, max_width=2048 // 16, base=10000.0, device=None, scaling_factor=1.0):
# split the dimension into half, one for x and one for y
half_dim = dim // 2
inv_freq = 1.0 / (base ** (torch.arange(0, half_dim, 2, dtype=torch.int64).to(device) / half_dim)) # namely theta, 1 / (10000^(i/half_dim)), i=0,2,..., half_dim-2
t_height = torch.arange(max_height, device=device, dtype=torch.int64).type_as(inv_freq)
t_width = torch.arange(max_width, device=device, dtype=torch.int64).type_as(inv_freq)
t_height = t_height / scaling_factor
freqs_height = torch.outer(t_height, inv_freq) # (max_height, dim / (1 for 1d, 2 for 2d, 3 for 3d) / 2), namely y*theta
t_width = t_width / scaling_factor
freqs_width = torch.outer(t_width, inv_freq) # (max_width, dim / (1 for 1d, 2 for 2d, 3 for 3d) / 2), namely x*theta
freqs_grid_map = torch.concat([
freqs_height[:, None, :].expand(-1, max_width, -1), # (max_height, max_width, dim / (1 for 1d, 2 for 2d, 3 for 3d) / 2)
freqs_width[None, :, :].expand(max_height, -1, -1), # (max_height, max_width, dim / (1 for 1d, 2 for 2d, 3 for 3d) / 2)
], dim=-1) # (max_height, max_width, dim / (1 for 1d, 2 for 2d, 3 for 3d))
freqs_grid_map = torch.stack([torch.cos(freqs_grid_map), torch.sin(freqs_grid_map)], dim=0)
# (2, max_height, max_width, dim / (1 for 1d, 2 for 2d, 3 for 3d))
rope2d_freqs_grid = {}
for h_div_w in dynamic_resolution_h_w:
scale_schedule = dynamic_resolution_h_w[h_div_w]['1M']['scales']
_, ph, pw = scale_schedule[-1]
max_edge_length = freqs_grid_map.shape[1]
if ph >= pw:
uph, upw = max_edge_length, int(max_edge_length / ph * pw)
else:
uph, upw = int(max_edge_length / pw * ph), max_edge_length
rope_cache_list = []
for (_, ph, pw) in scale_schedule:
ph_mul_pw = ph * pw
if rope2d_normalized_by_hw == 1: # downsample
rope_cache = F.interpolate(freqs_grid_map[:, :uph, :upw, :].permute([0,3,1,2]), size=(ph, pw), mode='bilinear', align_corners=True)
rope_cache = rope_cache.permute([0,2,3,1]) # (2, ph, pw, half_head_dim)
elif rope2d_normalized_by_hw == 2: # star stylee
_, uph, upw = scale_schedule[-1]
indices = torch.stack([
(torch.arange(ph) * (uph / ph)).reshape(ph, 1).expand(ph, pw),
(torch.arange(pw) * (upw / pw)).reshape(1, pw).expand(ph, pw),
], dim=-1).round().int() # (ph, pw, 2)
indices = indices.reshape(-1, 2) # (ph*pw, 2)
rope_cache = freqs_grid_map[:, indices[:,0], indices[:,1], :] # (2, ph*pw, half_head_dim)
rope_cache = rope_cache.reshape(2, ph, pw, -1)
elif rope2d_normalized_by_hw == 0:
rope_cache = freqs_grid_map[:, :ph, :pw, :] # (2, ph, pw, half_head_dim)
else:
raise ValueError(f'Unknown rope2d_normalized_by_hw: {rope2d_normalized_by_hw}')
rope_cache_list.append(rope_cache.reshape(2, ph_mul_pw, -1))
cat_rope_cache = torch.cat(rope_cache_list, 1) # (2, seq_len, half_head_dim)
if cat_rope_cache.shape[1] % pad_to_multiplier:
pad = torch.zeros(2, pad_to_multiplier - cat_rope_cache.shape[1] % pad_to_multiplier, half_dim)
cat_rope_cache = torch.cat([cat_rope_cache, pad], dim=1)
cat_rope_cache = cat_rope_cache[:,None,None,None] # (2, 1, 1, 1, seq_len, half_dim)
for pn in dynamic_resolution_h_w[h_div_w]:
scale_schedule = dynamic_resolution_h_w[h_div_w][pn]['scales']
tmp_scale_schedule = [(1, h, w) for _, h, w in scale_schedule]
rope2d_freqs_grid[str(tuple(tmp_scale_schedule))] = cat_rope_cache
return rope2d_freqs_grid
def apply_rotary_emb(q, k, scale_schedule, rope2d_freqs_grid, pad_to_multiplier, rope2d_normalized_by_hw, scale_ind):
qk = torch.stack((q, k), dim=0) #(2, batch_size, heads, seq_len, head_dim)
device_type = qk.device.type
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
with torch.autocast(device_type=device_type, enabled=False):
seq_len = qk.shape[3]
start = 0
if scale_ind >= 1:
assert len(scale_schedule[0]) == 3
start = np.sum([item[0] * item[1] * item[2] for item in scale_schedule[:scale_ind]])
rope2d_freqs_grid[str(tuple(scale_schedule))] = rope2d_freqs_grid[str(tuple(scale_schedule))].to(qk.device)
assert start+seq_len <= rope2d_freqs_grid[str(tuple(scale_schedule))].shape[4]
rope_cache = rope2d_freqs_grid[str(tuple(scale_schedule))][:, :, :, :, start:start+seq_len] # rope_cache shape: [2, 1, 1, 1, seq_len, half_head_dim]
rope_cache = rope_cache.to(dtype=qk.dtype)
qk = qk.reshape(*qk.shape[:-1], -1, 2) #(2, batch_size, heads, seq_len, half_head_dim, 2)
qk = torch.stack([
rope_cache[0] * qk[...,0] - rope_cache[1] * qk[...,1],
rope_cache[1] * qk[...,0] + rope_cache[0] * qk[...,1],
], dim=-1) # (2, batch_size, heads, seq_len, half_head_dim, 2), here stack + reshape should not be concate
qk = qk.reshape(*qk.shape[:-2], -1) #(2, batch_size, heads, seq_len, head_dim)
q, k = qk.unbind(dim=0) # (batch_size, heads, seq_len, head_dim)
return q, k
class FastRMSNorm(nn.Module):
def __init__(self, C, eps=1e-6, elementwise_affine=True):
super().__init__()
self.C = C
self.eps = eps
self.elementwise_affine = elementwise_affine
if self.elementwise_affine:
self.weight = nn.Parameter(torch.ones(C))
else:
self.register_buffer('weight', torch.ones(C))
def forward(self, x):
src_type = x.dtype
return rms_norm_impl(x, self.weight, epsilon=self.eps).to(src_type)
def extra_repr(self) -> str:
return f'C={self.C}, eps={self.eps:g}, elementwise_affine={self.elementwise_affine}'
def get_dropout_layer(p):
return nn.Dropout(p, inplace=True) if p > 0 else nn.Identity()
class FFN(nn.Module):
def __init__(self, in_features, hidden_features=None, out_features=None, drop=0., fused_mlp=False):
super().__init__()
self.fused_mlp_func = fused_mlp_func if fused_mlp else None
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = nn.GELU(approximate='tanh')
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = get_dropout_layer(drop)
self.heuristic = -1
def forward(self, x):
if self.fused_mlp_func is not None:
return self.drop(self.fused_mlp_func(
x=x,
weight1=self.fc1.weight,
weight2=self.fc2.weight,
bias1=self.fc1.bias,
bias2=self.fc2.bias,
activation='gelu_approx',
save_pre_act=self.training,
return_residual=False,
checkpoint_lvl=0,
heuristic=self.heuristic,
process_group=None,
))
else:
return self.drop(self.fc2( self.act(self.fc1(x)) ))
def extra_repr(self) -> str:
return f'fused_mlp={self.fused_mlp_func is not None}'
class FFNSwiGLU(nn.Module):
def __init__(self, in_features, hidden_features, out_features=None, drop=0., fused_mlp=False):
super().__init__()
self.fused_mlp_func = None
hidden_features = round(2 * hidden_features / 3 / 256) * 256
out_features = out_features or in_features
self.fcg = nn.Linear(in_features, hidden_features, bias=False)
self.fc1 = nn.Linear(in_features, hidden_features, bias=False)
self.fc2 = nn.Linear(hidden_features, out_features, bias=False)
self.drop = get_dropout_layer(drop)
def forward(self, x):
return self.drop(self.fc2( F.silu(self.fcg(x), inplace=True).mul_(self.fc1(x)) ))
def extra_repr(self) -> str:
return f'fused_mlp={self.fused_mlp_func is not None}'
class SelfAttention(nn.Module):
def __init__(
self, embed_dim=768, num_heads=12,
proj_drop=0., tau=1, cos_attn=False, customized_flash_attn=True, use_flex_attn=False,
batch_size=2, pad_to_multiplier=1, rope2d_normalized_by_hw=0,
):
"""
:param embed_dim: model's width
:param num_heads: num heads of multi-head attention
:param proj_drop: always 0 for testing
:param tau: always 1
:param cos_attn: always True: during attention, q and k will be L2-normalized and scaled by a head-wise learnable parameter self.scale_mul_1H11
:param customized_flash_attn:
"""
super().__init__()
assert embed_dim % num_heads == 0
self.using_flash = customized_flash_attn
self.num_heads, self.head_dim = num_heads, embed_dim // num_heads
self.tau, self.cos_attn = tau, cos_attn
if self.cos_attn:
self.scale = 1
size = (1, 1, self.num_heads, 1) if self.using_flash else (1, self.num_heads, 1, 1)
# size: 11H1 or 1H11
self.scale_mul_1H11 = nn.Parameter(torch.full(size=size, fill_value=4.0).log(), requires_grad=True)
self.max_scale_mul = torch.log(torch.tensor(100)).item()
else:
self.scale = 1 / math.sqrt(self.head_dim) / self.tau
self.mat_qkv = nn.Linear(embed_dim, embed_dim * 3, bias=False)
self.q_bias, self.v_bias = nn.Parameter(torch.zeros(embed_dim)), nn.Parameter(torch.zeros(embed_dim))
self.register_buffer('zero_k_bias', torch.zeros(embed_dim))
self.proj = nn.Linear(embed_dim, embed_dim)
self.proj_drop = get_dropout_layer(proj_drop)
self.caching = False # kv caching: only used during inference
self.cached_k = None # kv caching: only used during inference
self.cached_v = None # kv caching: only used during inference
self.batch_size = batch_size
self.use_flex_attn = use_flex_attn
self.pad_to_multiplier = pad_to_multiplier
self.rope2d_normalized_by_hw = rope2d_normalized_by_hw
def kv_caching(self, enable: bool): # kv caching: only used during inference
self.caching = enable
self.cached_k = None
self.cached_v = None
# NOTE: attn_bias_or_two_vector is None during inference
def forward(self, x, attn_bias_or_two_vector: Union[torch.Tensor, Tuple[torch.IntTensor, torch.IntTensor]], attn_fn=None, scale_schedule=None, rope2d_freqs_grid=None, scale_ind=0):
"""
:param (fp32) x: shaped (B or batch_size, L or seq_length, C or hidden_dim); if seq-parallel is used, the `L` dim would be shared
:param (fp32) attn_bias_or_two_vector:
if not using_flash:
a block-wise, lower-triangle matrix, like:
[[[[0, -, -, -, -, -, -, -, -, -, -, -, -, -],
[0, 0, 0, 0, 0, -, -, -, -, -, -, -, -, -],
[0, 0, 0, 0, 0, -, -, -, -, -, -, -, -, -],
[0, 0, 0, 0, 0, -, -, -, -, -, -, -, -, -],
[0, 0, 0, 0, 0, -, -, -, -, -, -, -, -, -],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]]]
where 0 means visible and - means invisible (-inf)
else:
a tuple of two 1-dim int vector (VAR_visible_kvlen, VAR_invisible_qlen)
:return: shaped (B or batch_size, L or seq_length, C or hidden_dim); if seq-parallel is used, the `L` dim would be shared
"""
# x: fp32
B, L, C = x.shape
# qkv: amp, bf16
qkv = F.linear(input=x, weight=self.mat_qkv.weight, bias=torch.cat((self.q_bias, self.zero_k_bias, self.v_bias))).view(B, L, 3, self.num_heads, self.head_dim) # BL3Hc
if self.using_flash: q, k, v = qkv.unbind(dim=2); L_dim = 1 # q or k or v: all are shaped in (B:batch_size, L:seq_len, H:heads, c:head_dim)
else: q, k, v = qkv.permute(2, 0, 3, 1, 4).unbind(dim=0); L_dim = 2 # q or k or v: all are shaped in (B:batch_size, H:heads, L:seq_len, c:head_dim)
if self.cos_attn: # always True
scale_mul = self.scale_mul_1H11.clamp_max(self.max_scale_mul).exp() # 11H1 (flash), or 1H11 (not flash)
scale_mul = scale_mul.to(dtype=qkv.dtype)
q = F.normalize(q, dim=-1, eps=1e-12).mul(scale_mul).contiguous() # fp32
k = F.normalize(k, dim=-1, eps=1e-12).contiguous() # fp32
v = v.contiguous() # bf16
else: # be contiguous, to make kernel happy
q = q.contiguous() # bf16
k = k.contiguous() # bf16
v = v.contiguous() # bf16
q = q.to(dtype=qkv.dtype)
k = k.to(dtype=qkv.dtype)
v = v.to(dtype=qkv.dtype)
if rope2d_freqs_grid is not None:
q, k = apply_rotary_emb(q, k, scale_schedule, rope2d_freqs_grid, self.pad_to_multiplier, self.rope2d_normalized_by_hw, scale_ind) #, freqs_cis=freqs_cis)
if self.caching: # kv caching: only used during inference
if self.cached_k is None: self.cached_k = k; self.cached_v = v
else: k = self.cached_k = torch.cat((self.cached_k, k), dim=L_dim); v = self.cached_v = torch.cat((self.cached_v, v), dim=L_dim)
if self.using_flash:
if attn_bias_or_two_vector is not None: # training
kw = dict(VAR_visible_kvlen=attn_bias_or_two_vector[0], VAR_invisible_qlen=attn_bias_or_two_vector[1])
else: # inference (autoregressive sampling)
kw = dict()
oup = flash_attn_func(q.to(v.dtype), k.to(v.dtype), v, dropout_p=0, softmax_scale=self.scale, **kw).view(B, L, C)
else:
# if self.cos_attn: q, k are in fp32; v is in bf16
# else: q, k, v are in bf16
if self.use_flex_attn and attn_fn is not None:
oup = attn_fn(q, k, v, scale=self.scale).transpose(1, 2).reshape(B, L, C)
else:
oup = slow_attn(query=q, key=k, value=v, scale=self.scale, attn_mask=attn_bias_or_two_vector, dropout_p=0).transpose(1, 2).reshape(B, L, C)
# oup: bf16
return self.proj_drop(self.proj(oup))
def extra_repr(self) -> str:
tail = ''
return f'using_flash={self.using_flash}, tau={self.tau}, cos_attn={self.cos_attn}{tail}'
class CrossAttention(nn.Module):
def __init__(
self, for_attn_pool=False, embed_dim=768, kv_dim=4096, num_heads=12,
proj_drop=0., cos_attn=False,
):
"""
:param for_attn_pool: only used in VAR.text_proj_for_sos
:param embed_dim: Q's dim
:param kv_dim: K's and V's dim
:param num_heads: num heads of multi-head attention
:param proj_drop: proj drop out
:param cos_attn: during attention, q and k will be L2-normalized and scaled by a head-wise learnable parameter self.scale_mul_1H11
"""
cos_attn = False # TODO: never use cos attn in cross attention with T5 kv
super().__init__()
self.for_attn_pool = for_attn_pool
self.embed_dim = embed_dim
self.kv_dim = kv_dim
assert embed_dim % num_heads == 0
self.num_heads, self.head_dim = num_heads, embed_dim // num_heads # =64
self.cos_attn = cos_attn
if self.cos_attn:
self.scale = 1
self.scale_mul_1H1 = nn.Parameter(torch.full(size=(1, self.num_heads, 1, 1), fill_value=4.0).log(), requires_grad=True)
self.max_scale_mul = torch.log(torch.tensor(100)).item()
else:
self.scale = 1 / math.sqrt(self.head_dim)
if for_attn_pool:
q = torch.empty(1, self.num_heads, self.head_dim)
nn.init.trunc_normal_(q, mean=0, std=math.sqrt(1 / embed_dim / 3))
self.mat_q = nn.Parameter(q)
else:
self.mat_q = nn.Linear(embed_dim, embed_dim, bias=True)
self.mat_kv = nn.Linear(kv_dim, embed_dim*2, bias=False)
self.v_bias = nn.Parameter(torch.zeros(embed_dim))
self.register_buffer('zero_k_bias', torch.zeros(embed_dim))
self.proj = nn.Linear(embed_dim, embed_dim)
self.proj_drop = get_dropout_layer(proj_drop)
def forward(self, q, ca_kv):
"""
:param q: shaped as (batch, seq_len, Q_dim)
:param ca_kv: contains several vectors, each of which is shaped as (len_i, KV_dim). We have [len_1xKV_dim, len_2xKV_dim, len_3xKV_dim, ...] and lens == [len_1, len_2, len_3, ...]
- kv_compact: shaped as (sum(lens), KV_dim)
- cu_seqlens_k: cumulated sum of lens
- max_seqlen_k: int, max(lens)
NOTE: seq_len (num of Qs) can reach 10k; but len_i (num of KVs) must <= 256
:return: shaped as (batch, seq_len, Q_dim)
"""
kv_compact, cu_seqlens_k, max_seqlen_k = ca_kv
N = kv_compact.shape[0]
kv_compact = F.linear(kv_compact, weight=self.mat_kv.weight, bias=torch.cat((self.zero_k_bias, self.v_bias))).view(N, 2, self.num_heads, self.head_dim) # NC => N2Hc
# attn_bias = xformers.ops.fmha.BlockDiagonalMask.from_seqlens
if not self.for_attn_pool:
B, Lq = q.shape[:2]
q_compact = self.mat_q(q).view(-1, self.num_heads, self.head_dim)
else:
B = cu_seqlens_k.shape[0] - 1
Lq = 1
q_compact = self.mat_q.repeat(B, 1, 1).to(dtype=kv_compact.dtype)
if self.cos_attn: # always False
scale_mul = self.scale_mul_1H1.clamp_max(self.max_scale_mul).exp()
k, v = kv_compact.unbind(dim=1)
q_compact = F.normalize(q_compact, dim=-1).mul(scale_mul)
k = F.normalize(k, dim=-1)
kv_compact = torch.stack((k, v), dim=1)
q_compact = q_compact.contiguous()
kv_compact = kv_compact.contiguous()
cu_seqlens_q = torch.arange(0, Lq * (B+1), Lq, dtype=torch.int32, device=q_compact.device)
if q_compact.dtype == torch.float32: # todo: fp16 or bf16?
oup = flash_attn_varlen_kvpacked_func(q=q_compact.to(dtype=torch.bfloat16), kv=kv_compact.to(dtype=torch.bfloat16), cu_seqlens_q=cu_seqlens_q, cu_seqlens_k=cu_seqlens_k, max_seqlen_q=Lq, max_seqlen_k=max_seqlen_k, dropout_p=0, softmax_scale=self.scale).reshape(B, Lq, -1)
oup = oup
else:
oup = flash_attn_varlen_kvpacked_func(q=q_compact, kv=kv_compact, cu_seqlens_q=cu_seqlens_q, cu_seqlens_k=cu_seqlens_k, max_seqlen_q=Lq, max_seqlen_k=max_seqlen_k, dropout_p=0, softmax_scale=self.scale).reshape(B, Lq, -1)
return self.proj_drop(self.proj(oup))
def extra_repr(self) -> str:
return f'Cq={self.embed_dim}, Ckv={self.kv_dim}, cos_attn={self.cos_attn}'
class SelfAttnBlock(nn.Module):
def __init__(
self, embed_dim, kv_dim, cross_attn_layer_scale, cond_dim, act: bool, shared_aln: bool, norm_layer: partial,
num_heads, mlp_ratio=4., drop=0., drop_path=0., tau=1, cos_attn=False,
swiglu=False, customized_flash_attn=False, fused_mlp=False, fused_norm_func=None, checkpointing_sa_only=False,
):
super(SelfAttnBlock, self).__init__()
self.C, self.D = embed_dim, cond_dim
self.drop_path_rate = drop_path
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.attn = SelfAttention(
embed_dim=embed_dim, num_heads=num_heads, proj_drop=drop, tau=tau, cos_attn=cos_attn, customized_flash_attn=customized_flash_attn, attn_fn = attn_fn
)
self.using_swiglu = swiglu
self.ffn = (FFNSwiGLU if swiglu else FFN)(in_features=embed_dim, hidden_features=round(embed_dim * mlp_ratio / 256) * 256, drop=drop, fused_mlp=fused_mlp)
self.ln_wo_grad = norm_layer(embed_dim, elementwise_affine=False)
self.fused_norm_func = fused_norm_func
self.norm_eps = norm_layer.keywords.get('eps', 1e-6)
self.shared_aln = shared_aln
if self.shared_aln:
self.ada_gss = nn.Parameter(torch.randn(1, 1, 6, embed_dim) / embed_dim**0.5)
else:
lin = nn.Linear(cond_dim, 6*embed_dim)
self.ada_lin = nn.Sequential(nn.SiLU(inplace=False), lin) if act else nn.Sequential(lin)
# NOTE: attn_bias_or_two_vector is None during inference
def forward(self, x, cond_BD, ca_kv, attn_bias_or_two_vector): # todo: minGPT and vqgan also uses pre-norm, just like this, while MaskGiT uses post-norm
with torch.cuda.amp.autocast(enabled=False):
if self.shared_aln: # always True; (1, 1, 6, C) + (B, 1, 6, C)
gamma1, gamma2, scale1, scale2, shift1, shift2 = (self.ada_gss + cond_BD).unbind(2) # 116C + B16C =unbind(2)=> 6 B1C
else:
gamma1, gamma2, scale1, scale2, shift1, shift2 = self.ada_lin(cond_BD).view(-1, 1, 6, self.C).unbind(2)
if self.fused_ada_norm is None:
x = x + self.drop_path(self.attn( self.ln_wo_grad(x).mul(scale1.add(1)).add_(shift1), attn_bias_or_two_vector=attn_bias_or_two_vector ).mul_(gamma1))
x = x + self.drop_path(self.ffn( self.ln_wo_grad(x).mul(scale2.add(1)).add_(shift2) ).mul(gamma2)) # this mul(gamma2) cannot be in-placed cuz we possibly use FusedMLP
else:
x = x + self.drop_path(self.attn(self.fused_ada_norm(C=self.C, eps=self.norm_eps, x=x, scale=scale1, shift=shift1), attn_bias_or_two_vector=attn_bias_or_two_vector).mul_(gamma1))
x = x + self.drop_path(self.ffn(self.fused_ada_norm(C=self.C, eps=self.norm_eps, x=x, scale=scale2, shift=shift2)).mul(gamma2)) # this mul(gamma2) cannot be in-placed cuz we possibly use FusedMLP
return x
def extra_repr(self) -> str:
return f'shared_aln={self.shared_aln}, fused_norm={self.fused_norm_func is not None}'
class CrossAttnBlock(nn.Module):
def __init__(
self,
embed_dim, kv_dim, cross_attn_layer_scale, cond_dim, act: bool, shared_aln: bool, norm_layer: partial,
num_heads, mlp_ratio=4., drop=0., drop_path=0., tau=1, cos_attn=False,
swiglu=False, customized_flash_attn=False, fused_mlp=False, fused_norm_func=None, checkpointing_sa_only=False,
use_flex_attn=False, batch_size=2, pad_to_multiplier=1, apply_rope2d=False, rope2d_normalized_by_hw=False,
):
super(CrossAttnBlock, self).__init__()
self.C, self.D = embed_dim, cond_dim
self.drop_path_rate = drop_path
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.sa = SelfAttention(
embed_dim=embed_dim, num_heads=num_heads, proj_drop=drop, tau=tau, cos_attn=cos_attn, customized_flash_attn=customized_flash_attn,
use_flex_attn=use_flex_attn, batch_size=batch_size, pad_to_multiplier=pad_to_multiplier, rope2d_normalized_by_hw=rope2d_normalized_by_hw,
)
self.ca = CrossAttention(embed_dim=embed_dim, kv_dim=kv_dim, num_heads=num_heads, proj_drop=drop, cos_attn=cos_attn)
self.using_swiglu = swiglu
self.ffn = (FFNSwiGLU if swiglu else FFN)(in_features=embed_dim, hidden_features=round(embed_dim * mlp_ratio / 256) * 256, drop=drop, fused_mlp=fused_mlp)
self.ln_wo_grad = norm_layer(embed_dim, elementwise_affine=False)
self.fused_norm_func = fused_norm_func
self.norm_eps = norm_layer.keywords.get('eps', 1e-6)
self.ca_norm = norm_layer(embed_dim, elementwise_affine=True)
self.shared_aln = shared_aln
if self.shared_aln: # always True
self.ada_gss = nn.Parameter(torch.randn(1, 1, 6, embed_dim) / embed_dim**0.5)
else:
lin = nn.Linear(cond_dim, 6*embed_dim)
self.ada_lin = nn.Sequential(nn.SiLU(inplace=False), lin) if act else nn.Sequential(lin)
if cross_attn_layer_scale >= 0:
self.ca_gamma = nn.Parameter(cross_attn_layer_scale * torch.ones(embed_dim), requires_grad=True)
else:
self.ca_gamma = 1
self.checkpointing_sa_only = checkpointing_sa_only
# NOTE: attn_bias_or_two_vector is None during inference
def forward(self, x, cond_BD, ca_kv, attn_bias_or_two_vector, attn_fn=None, scale_schedule=None, rope2d_freqs_grid=None, scale_ind=0): # todo: minGPT and vqgan also uses pre-norm, just like this, while MaskGiT uses post-norm
with torch.cuda.amp.autocast(enabled=False): # disable half precision
if self.shared_aln: # always True; (1, 1, 6, C) + (B, 1, 6, C)
gamma1, gamma2, scale1, scale2, shift1, shift2 = (self.ada_gss + cond_BD).unbind(2) # 116C + B16C =unbind(2)=> 6 B1C
else:
gamma1, gamma2, scale1, scale2, shift1, shift2 = self.ada_lin(cond_BD).view(-1, 1, 6, self.C).unbind(2)
if self.fused_norm_func is None:
x_sa = self.ln_wo_grad(x).mul(scale1.add(1)).add_(shift1)
if self.checkpointing_sa_only and self.training:
x_sa = checkpoint(self.sa, x_sa, attn_bias_or_two_vector, attn_fn, scale_schedule, rope2d_freqs_grid, use_reentrant=False)
else:
x_sa = self.sa(x_sa, attn_bias_or_two_vector, attn_fn, scale_schedule, rope2d_freqs_grid)
x = x + self.drop_path(x_sa.mul_(gamma1))
x = x + self.ca(self.ca_norm(x), ca_kv).mul_(self.ca_gamma)
x = x + self.drop_path(self.ffn( self.ln_wo_grad(x).mul(scale2.add(1)).add_(shift2) ).mul(gamma2)) # this mul(gamma2) cannot be in-placed cuz we possibly use FusedMLP
else:
x_sa = self.fused_norm_func(C=self.C, eps=self.norm_eps, x=x, scale=scale1, shift=shift1).to(dtype=x.dtype)
if self.checkpointing_sa_only and self.training:
x_sa = checkpoint(self.sa, x_sa, attn_bias_or_two_vector, attn_fn, scale_schedule, rope2d_freqs_grid, use_reentrant=False)
else:
x_sa = self.sa(x_sa, attn_bias_or_two_vector, attn_fn, scale_schedule, rope2d_freqs_grid, scale_ind=scale_ind)
x = x + self.drop_path(x_sa.mul_(gamma1))
x = x + self.ca(self.ca_norm(x), ca_kv).mul_(self.ca_gamma)
x = x + self.drop_path(self.ffn(self.fused_norm_func(C=self.C, eps=self.norm_eps, x=x, scale=scale2, shift=shift2)).mul(gamma2)) # this mul(gamma2) cannot be in-placed cuz we possibly use FusedMLP
return x
def extra_repr(self) -> str:
return f'shared_aln={self.shared_aln}, fused_norm={self.fused_norm_func is not None}, ca_gamma={"<learnable>" if isinstance(self.ca_gamma, nn.Parameter) else self.ca_gamma}'
class AdaLNBeforeHead(nn.Module):
def __init__(self, C, D, act: bool, norm_layer: partial, fused_norm_func=None): # C: embed_dim, D: cond_dim
super().__init__()
self.C, self.D = C, D
self.ln_wo_grad = norm_layer(C, elementwise_affine=False)
self.fused_norm_func = fused_norm_func
self.norm_eps = norm_layer.keywords.get('eps', 1e-6)
lin = nn.Linear(D, 2*C)
self.ada_lin = nn.Sequential(nn.SiLU(inplace=False), lin) if act else nn.Sequential(lin)
def forward(self, x_BLC: torch.Tensor, cond_BD: Optional[torch.Tensor]):
scale, shift = self.ada_lin(cond_BD).view(-1, 1, 2, self.C).unbind(2)
if self.fused_norm_func is None:
return self.ln_wo_grad(x_BLC).mul(scale.add(1)).add_(shift)
else:
return self.fused_norm_func(C=self.C, eps=self.norm_eps, x=x_BLC, scale=scale, shift=shift)
def main():
dev = 'cpu' # 'cuda' if torch.cuda.is_available() else 'cpu'
rng = torch.Generator(device=dev)
# for Li in ([1, 3, 5], [1, 3]):
rng.manual_seed(0)
B, H, cq, ckv = 4, 8, 64, 96
Cq = H*cq
Ckv = H*ckv
Li = [5, 4, 7, 6]
Lq = 10
L = max(Li)
attn_bias = torch.zeros(B, 1, Lq, L, device=dev)
for i, x in enumerate(Li):
attn_bias[i, 0, :, x:] = -torch.inf
q = torch.randn(B, Lq, H, cq, generator=rng, device=dev)
k = torch.randn(B, L, H, ckv, generator=rng, device=dev)
v = torch.randn(B, L, H, ckv, generator=rng, device=dev)
tq, tk, tv = q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2) # BHLc
seqlen_k = torch.tensor(Li, dtype=torch.int32, device=dev)
cu_seqlens_k = F.pad(torch.cumsum(seqlen_k, dim=0, dtype=torch.torch.int32), (1, 0))
kv = torch.stack([k, v], dim=2)
kv_compact = torch.cat([kv[i, :Li[i]] for i in range(B)], dim=0)
ca = CrossAttention(for_attn_pool=False, embed_dim=Cq, kv_dim=Ckv, num_heads=H)
CrossAttention.forward
ca(q, (kv_compact, cu_seqlens_k, max(Li))).mean().backward()
if __name__ == '__main__':
main()