Open
Description
Additionally to the sequence, we'd like to provide some other input (of some different size) to the model. A simple basic example to illustrate:
class SimpleConv(nn.Module):
def __init__(self):
self.conv_net = nn.Sequential(
nn.Conv2d(1, 1, kernel_size=3, stride=1, padding=1),
nn.ReLU(inplace=True),
)
self.fc_net = nn.Sequential(
nn.Linear(channels_in, channels_out),
nn.ReLU(inplace=True),
)
def forward(self, x: List[np.ndarray]):
y1 = self.conv_net(x[0])
y2 = self.fc_net(x[1])
y = torch.cat((y1, y2), 1)
return y
Do you think we could modify the _get_batch()
function to return a tuple(List[np.ndarray], np.ndarray)
?
https://github.com/FunctionLab/selene/blob/master/selene_sdk/train_model.py#L346-L355
Maybe we could wrap the
https://github.com/FunctionLab/selene/blob/master/selene_sdk/train_model.py#L453-L464
into some function, which will return either a single Tensor
or a List[Tensor]
for the inputs, based on the provided inputs
type? Or would be there a better design solution?
Metadata
Metadata
Assignees
Labels
No labels