-
Notifications
You must be signed in to change notification settings - Fork 3.5k
/
Copy pathsingle_device.py
102 lines (84 loc) · 3.3 KB
/
single_device.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
# Copyright The Lightning AI team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
from typing import Any
import torch
from torch import Tensor
from typing_extensions import override
import lightning.pytorch as pl
from lightning.fabric.plugins import CheckpointIO
from lightning.fabric.strategies import _StrategyRegistry
from lightning.fabric.utilities.types import _DEVICE
from lightning.pytorch.plugins.precision import Precision
from lightning.pytorch.strategies.strategy import Strategy, TBroadcast
class SingleDeviceStrategy(Strategy):
"""Strategy that handles communication on a single device."""
strategy_name = "single_device"
def __init__(
self,
device: _DEVICE = "cpu",
accelerator: pl.accelerators.accelerator.Accelerator | None = None,
checkpoint_io: CheckpointIO | None = None,
precision_plugin: Precision | None = None,
):
super().__init__(accelerator=accelerator, checkpoint_io=checkpoint_io, precision_plugin=precision_plugin)
if not isinstance(device, torch.device):
device = torch.device(device)
self._root_device = device
self.global_rank = 0
self.local_rank = 0
self.world_size = 1
@override
def reduce(self, tensor: Any | Tensor, *args: Any, **kwargs: Any) -> Any | Tensor:
"""Reduces a tensor from several distributed processes to one aggregated tensor. Since this strategy only
operates with a single device, the reduction is simply the identity.
Args:
tensor: the tensor to sync and reduce
*args: ignored
**kwargs: ignored
Return:
the unmodified input as reduction is not needed for single process operation
"""
return tensor
@override
def all_gather(self, tensor: Tensor, group: Any | None = None, sync_grads: bool = False) -> Tensor:
"""Perform a all_gather on all processes."""
return tensor
@property
@override
def root_device(self) -> torch.device:
return self._root_device
@override
def model_to_device(self) -> None:
assert self.model is not None, "self.model must be set before self.model.to()"
if self.model.device.type != self.root_device.type:
self.model.to(self.root_device)
@property
@override
def is_global_zero(self) -> bool:
return True
@override
def barrier(self, *args: Any, **kwargs: Any) -> None:
pass
@override
def broadcast(self, obj: TBroadcast, src: int = 0) -> TBroadcast:
return obj
@classmethod
@override
def register_strategies(cls, strategy_registry: _StrategyRegistry) -> None:
strategy_registry.register(
cls.strategy_name,
cls,
description=cls.__name__,
)