Open
Description
Outline & Motivation
The lr_scheduler_config
contains a frequency
key as shown below:
lr_scheduler_config = {
# REQUIRED: The scheduler instance
"scheduler": lr_scheduler,
# The unit of the scheduler's step size, could also be 'step'.
# 'epoch' updates the scheduler on epoch end whereas 'step'
# updates it after a optimizer update.
"interval": "epoch",
# How many epochs/steps should pass between calls to
# `scheduler.step()`. 1 corresponds to updating the learning
# rate after every epoch/step.
"frequency": 1,
# Metric to monitor for schedulers like `ReduceLROnPlateau`
"monitor": "val_loss",
# If set to `True`, will enforce that the value specified 'monitor'
# is available when the scheduler is updated, thus stopping
# training if not found. If set to `False`, it will only produce a warning
"strict": True,
# If using the `LearningRateMonitor` callback to monitor the
# learning rate progress, this keyword can be used to specify
# a custom logged name
"name": None,
}
The frequency of the learning rate decay is already handled by the torch.optim.lr_scheduler
's. For example, in StepLR
this is handled by the step_size
parameter as following:
# Assuming optimizer uses lr = 0.05 for all groups
# lr = 0.05 if epoch < 30
# lr = 0.005 if 30 <= epoch < 60
# lr = 0.0005 if 60 <= epoch < 90
# ...
scheduler = StepLR(optimizer, step_size=30, gamma=0.1)
for epoch in range(100):
train(...)
validate(...)
scheduler.step()
meaning that {..., 'frequency': 2, ...}
and step_size=2
is equivalent to {..., 'frequency': 1, ...}
and step_size=4
.
Is there any case where the frequency
key would be beneficial?
Pitch
No response
Additional context
No response