Skip to content

Commit 8125a13

Browse files
更新文档中代码地址
1 parent 6a45cc5 commit 8125a13

14 files changed

+36
-36
lines changed

blog/ml/10.k-means聚类.md

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -147,8 +147,8 @@ def kMeans(dataSet, k, distMeas=distEclud, createCent=randCent):
147147
```
148148

149149
#### 测试函数
150-
1. 测试一下以上的基础函数是否可以如预期运行, 请看: <https://github.com/apachecn/AiLearning/blob/master/src/py2.x/ML/10.kmeans/kMeans.py>
151-
2. 测试一下 kMeans 函数是否可以如预期运行, 请看: <https://github.com/apachecn/AiLearning/blob/master/src/py2.x/ML/10.kmeans/kMeans.py>
150+
1. 测试一下以上的基础函数是否可以如预期运行, 请看: <https://github.com/apachecn/AiLearning/blob/master/src/py2.x/ml/10.kmeans/kMeans.py>
151+
2. 测试一下 kMeans 函数是否可以如预期运行, 请看: <https://github.com/apachecn/AiLearning/blob/master/src/py2.x/ml/10.kmeans/kMeans.py>
152152

153153
参考运行结果如下:
154154
![K-Means 运行结果1](/img/ml/10.KMeans/apachecn-k-means-run-result-1.jpg)
@@ -224,7 +224,7 @@ def biKMeans(dataSet, k, distMeas=distEclud):
224224
```
225225

226226
#### 测试二分 KMeans 聚类算法
227-
* 测试一下二分 KMeans 聚类算法,请看: <https://github.com/apachecn/AiLearning/blob/master/src/py2.x/ML/10.kmeans/kMeans.py>
227+
* 测试一下二分 KMeans 聚类算法,请看: <https://github.com/apachecn/AiLearning/blob/master/src/py2.x/ml/10.kmeans/kMeans.py>
228228

229229
上述函数可以运行多次,聚类会收敛到全局最小值,而原始的 kMeans() 函数偶尔会陷入局部最小值。
230230
运行参考结果如下:

blog/ml/11.使用Apriori算法进行关联分析.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -162,7 +162,7 @@ def scanD(D, Ck, minSupport):
162162
return retList, supportData
163163
```
164164

165-
完整代码地址: <https://github.com/apachecn/AiLearning/blob/master/src/py2.x/ML/11.Apriori/apriori.py>
165+
完整代码地址: <https://github.com/apachecn/AiLearning/blob/master/src/py2.x/ml/11.Apriori/apriori.py>
166166

167167
### 组织完整的 Apriori 算法
168168

@@ -250,7 +250,7 @@ def apriori(dataSet, minSupport=0.5):
250250

251251
到这一步,我们就找出我们所需要的 `频繁项集` 和他们的 `支持度` 了,接下来再找出关联规则即可!
252252

253-
完整代码地址: <https://github.com/apachecn/AiLearning/blob/master/src/py2.x/ML/11.Apriori/apriori.py>
253+
完整代码地址: <https://github.com/apachecn/AiLearning/blob/master/src/py2.x/ml/11.Apriori/apriori.py>
254254

255255
## 从频繁项集中挖掘关联规则
256256

blog/ml/12.使用FP-growth算法来高效发现频繁项集.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -80,7 +80,7 @@ FP-growth 算法优缺点:
8080

8181

8282
## FP-growth 代码讲解
83-
完整代码地址: <https://github.com/apachecn/AiLearning/blob/master/src/py2.x/ML/12.FrequentPattemTree/fpGrowth.py>
83+
完整代码地址: <https://github.com/apachecn/AiLearning/blob/master/src/py2.x/ml/12.FrequentPattemTree/fpGrowth.py>
8484

8585
main 方法大致步骤:
8686
```python

blog/ml/13.利用PCA来简化数据.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -205,7 +205,7 @@ def pca(dataMat, topNfeat=9999999):
205205
return lowDDataMat, reconMat
206206
```
207207

208-
[完整代码地址](https://github.com/apachecn/AiLearning/blob/master/src/py2.x/ML/13.PCA/pca.py): <https://github.com/apachecn/AiLearning/blob/master/src/py2.x/ML/13.PCA/pca.py>
208+
[完整代码地址](https://github.com/apachecn/AiLearning/blob/master/src/py2.x/ml/13.PCA/pca.py): <https://github.com/apachecn/AiLearning/blob/master/src/py2.x/ml/13.PCA/pca.py>
209209

210210
### 要点补充
211211

blog/ml/14.利用SVD简化数据.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -307,7 +307,7 @@ def recommend(dataMat, user, N=3, simMeas=cosSim, estMethod=standEst):
307307

308308
> 测试 和 项目调用,可直接参考我们的代码
309309
310-
[完整代码地址](https://github.com/apachecn/AiLearning/blob/master/src/py2.x/ML/14.SVD/svdRecommend.py): <https://github.com/apachecn/AiLearning/blob/master/src/py2.x/ML/14.SVD/svdRecommend.py>
310+
[完整代码地址](https://github.com/apachecn/AiLearning/blob/master/src/py2.x/ml/14.SVD/svdRecommend.py): <https://github.com/apachecn/AiLearning/blob/master/src/py2.x/ml/14.SVD/svdRecommend.py>
311311

312312
#### 要点补充
313313

@@ -424,7 +424,7 @@ def imgCompress(numSV=3, thresh=0.8):
424424
printMat(reconMat, thresh)
425425
```
426426

427-
[完整代码地址](https://github.com/apachecn/AiLearning/blob/master/src/py2.x/ML/14.SVD/svdRecommend.py): <https://github.com/apachecn/AiLearning/blob/master/src/py2.x/ML/14.SVD/svdRecommend.py>
427+
[完整代码地址](https://github.com/apachecn/AiLearning/blob/master/src/py2.x/ml/14.SVD/svdRecommend.py): <https://github.com/apachecn/AiLearning/blob/master/src/py2.x/ml/14.SVD/svdRecommend.py>
428428

429429
* * *
430430

blog/ml/15.大数据与MapReduce.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -211,10 +211,10 @@ def batchPegasos(dataSet, labels, lam, T, k):
211211
return w
212212
```
213213

214-
[完整代码地址](https://github.com/apachecn/AiLearning/blob/master/src/py2.x/ML/15.BigData_MapReduce/pegasos.py): <https://github.com/apachecn/AiLearning/blob/master/src/py2.x/ML/15.BigData_MapReduce/pegasos.py>
214+
[完整代码地址](https://github.com/apachecn/AiLearning/blob/master/src/py2.x/ml/15.BigData_MapReduce/pegasos.py): <https://github.com/apachecn/AiLearning/blob/master/src/py2.x/ml/15.BigData_MapReduce/pegasos.py>
215215

216216
运行方式:`python /opt/git/MachineLearning/src/python/15.BigData_MapReduce/mrSVM.py < input/15.BigData_MapReduce/inputFile.txt`
217-
[MR版本的代码地址](https://github.com/apachecn/AiLearning/blob/master/src/py2.x/ML/15.BigData_MapReduce/mrSVM.py): <https://github.com/apachecn/AiLearning/blob/master/src/py2.x/ML/15.BigData_MapReduce/mrSVM.py>
217+
[MR版本的代码地址](https://github.com/apachecn/AiLearning/blob/master/src/py2.x/ml/15.BigData_MapReduce/mrSVM.py): <https://github.com/apachecn/AiLearning/blob/master/src/py2.x/ml/15.BigData_MapReduce/mrSVM.py>
218218

219219
* * *
220220

blog/ml/2.k-近邻算法.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -67,7 +67,7 @@ knn 算法按照距离最近的三部电影的类型,决定未知电影的类
6767

6868
### 项目案例1: 优化约会网站的配对效果
6969

70-
[完整代码地址](../src/python/2.KNN/kNN.py): <https://github.com/apachecn/AiLearning/blob/master/src/py2.x/ML/2.KNN/kNN.py>
70+
[完整代码地址](/src/py2.x/ml/2.KNN/kNN.py): <https://github.com/apachecn/AiLearning/blob/master/src/py2.x/ml/2.KNN/kNN.py>
7171

7272
#### 项目概述
7373

@@ -337,7 +337,7 @@ You will probably like this person: in small doses
337337

338338
### 项目案例2: 手写数字识别系统
339339

340-
[完整代码地址](../src/python/2.KNN/kNN.py): <https://github.com/apachecn/AiLearning/blob/master/src/py2.x/ML/2.KNN/kNN.py>
340+
[完整代码地址](/src/py2.x/ml/2.KNN/kNN.py): <https://github.com/apachecn/AiLearning/blob/master/src/py2.x/ml/2.KNN/kNN.py>
341341

342342
#### 项目概述
343343

blog/ml/3.决策树.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -101,7 +101,7 @@ def createBranch():
101101

102102
#### 开发流程
103103

104-
[完整代码地址](../src/python/3.DecisionTree/DecisionTree.py): <https://github.com/apachecn/AiLearning/blob/master/src/py2.x/ML/3.DecisionTree/DecisionTree.py>
104+
[完整代码地址](/src/py2.x/ml/3.DecisionTree/DecisionTree.py): <https://github.com/apachecn/AiLearning/blob/master/src/py2.x/ml/3.DecisionTree/DecisionTree.py>
105105

106106
```
107107
收集数据:可以使用任何方法
@@ -340,7 +340,7 @@ def classify(inputTree, featLabels, testVec):
340340

341341
### 项目案例2: 使用决策树预测隐形眼镜类型
342342

343-
[完整代码地址](../src/python/3.DecisionTree/DecisionTree.py): <https://github.com/apachecn/AiLearning/blob/master/src/py2.x/ML/3.DecisionTree/DecisionTree.py>
343+
[完整代码地址](/src/py2.x/ml/3.DecisionTree/DecisionTree.py): <https://github.com/apachecn/AiLearning/blob/master/src/py2.x/ml/3.DecisionTree/DecisionTree.py>
344344

345345
#### 项目概述
346346

blog/ml/4.朴素贝叶斯.md

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -115,7 +115,7 @@ P(white|bucketB) = P(white and bucketB) / P(bucketB)
115115

116116
### 项目案例1: 屏蔽社区留言板的侮辱性言论
117117

118-
[完整代码地址](../src/python/4.NaiveBayes/bayes.py): <https://github.com/apachecn/AiLearning/blob/master/src/py2.x/ML/4.NaiveBayes/bayes.py>
118+
[完整代码地址](/src/py2.x/ml/4.NaiveBayes/bayes.py): <https://github.com/apachecn/AiLearning/blob/master/src/py2.x/ml/4.NaiveBayes/bayes.py>
119119

120120
#### 项目概述
121121

@@ -376,7 +376,7 @@ def testingNB():
376376

377377
### 项目案例2: 使用朴素贝叶斯过滤垃圾邮件
378378

379-
[完整代码地址](../src/python/4.NaiveBayes/bayes.py): <https://github.com/apachecn/AiLearning/blob/master/src/py2.x/ML/4.NaiveBayes/bayes.py>
379+
[完整代码地址](/src/py2.x/ml/4.NaiveBayes/bayes.py): <https://github.com/apachecn/AiLearning/blob/master/src/py2.x/ml/4.NaiveBayes/bayes.py>
380380

381381
#### 项目概述
382382

@@ -541,7 +541,7 @@ def spamTest():
541541

542542
### 项目案例3: 使用朴素贝叶斯分类器从个人广告中获取区域倾向
543543

544-
[完整代码地址](../src/python/4.NaiveBayes/bayes.py): <https://github.com/apachecn/AiLearning/blob/master/src/py2.x/ML/4.NaiveBayes/bayes.py>
544+
[完整代码地址](/src/py2.x/ml/4.NaiveBayes/bayes.py): <https://github.com/apachecn/AiLearning/blob/master/src/py2.x/ml/4.NaiveBayes/bayes.py>
545545

546546
#### 项目概述
547547

blog/ml/5.Logistic回归.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -132,7 +132,7 @@ Sigmoid 函数的输入记为 z ,由下面公式得到:
132132

133133
### 项目案例1: 使用 Logistic 回归在简单数据集上的分类
134134

135-
[完整代码地址](../src/python/5.Logistic/logistic.py): <https://github.com/apachecn/AiLearning/blob/master/src/py2.x/ML/5.Logistic/logistic.py>
135+
[完整代码地址](/src/py2.x/ml/5.Logistic/logistic.py): <https://github.com/apachecn/AiLearning/blob/master/src/py2.x/ml/5.Logistic/logistic.py>
136136

137137
#### 项目概述
138138

@@ -398,7 +398,7 @@ def stocGradAscent1(dataMatrix, classLabels, numIter=150):
398398

399399
### 项目案例2: 从疝气病症预测病马的死亡率
400400

401-
[完整代码地址](../src/python/5.Logistic/logistic.py): <https://github.com/apachecn/AiLearning/blob/master/src/py2.x/ML/5.Logistic/logistic.py>
401+
[完整代码地址](/src/py2.x/ml/5.Logistic/logistic.py): <https://github.com/apachecn/AiLearning/blob/master/src/py2.x/ml/5.Logistic/logistic.py>
402402

403403
#### 项目概述
404404

blog/ml/6.支持向量机.md

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -332,9 +332,9 @@ def smoSimple(dataMatIn, classLabels, C, toler, maxIter):
332332
return b, alphas
333333
```
334334

335-
[完整代码地址:SVM简化版,应用简化版SMO算法处理小规模数据集](https://github.com/apachecn/AiLearning/blob/master/src/py2.x/ML/6.SVM/svm-simple.py): <https://github.com/apachecn/AiLearning/blob/master/src/py2.x/ML/6.SVM/svm-simple.py>
335+
[完整代码地址:SVM简化版,应用简化版SMO算法处理小规模数据集](https://github.com/apachecn/AiLearning/blob/master/src/py2.x/ml/6.SVM/svm-simple.py): <https://github.com/apachecn/AiLearning/blob/master/src/py2.x/ml/6.SVM/svm-simple.py>
336336

337-
[完整代码地址:SVM完整版,使用完整 Platt SMO算法加速优化,优化点:选择alpha的方式不同](https://github.com/apachecn/AiLearning/blob/master/src/py2.x/ML/6.SVM/svm-complete_Non-Kernel.py): <https://github.com/apachecn/AiLearning/blob/master/src/py2.x/ML/6.SVM/svm-complete_Non-Kernel.py>
337+
[完整代码地址:SVM完整版,使用完整 Platt SMO算法加速优化,优化点:选择alpha的方式不同](https://github.com/apachecn/AiLearning/blob/master/src/py2.x/ml/6.SVM/svm-complete_Non-Kernel.py): <https://github.com/apachecn/AiLearning/blob/master/src/py2.x/ml/6.SVM/svm-complete_Non-Kernel.py>
338338

339339
## 核函数(kernel) 使用
340340

@@ -559,7 +559,7 @@ def testDigits(kTup=('rbf', 10)):
559559

560560
> 使用算法:一个图像识别的完整应用还需要一些图像处理的知识,这里并不打算深入介绍
561561
562-
[完整代码地址](https://github.com/apachecn/AiLearning/blob/master/src/py2.x/ML/6.SVM/svm-complete.py): <https://github.com/apachecn/AiLearning/blob/master/src/py2.x/ML/6.SVM/svm-complete.py>
562+
[完整代码地址](https://github.com/apachecn/AiLearning/blob/master/src/py2.x/ml/6.SVM/svm-complete.py): <https://github.com/apachecn/AiLearning/blob/master/src/py2.x/ml/6.SVM/svm-complete.py>
563563

564564
* * *
565565

blog/ml/7.集成方法-随机森林和AdaBoost.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -304,7 +304,7 @@ def evaluate_algorithm(dataset, algorithm, n_folds, *args):
304304

305305
> 使用算法:若你感兴趣可以构建完整的应用程序,从案例进行封装,也可以参考我们的代码
306306
307-
[完整代码地址](https://github.com/apachecn/AiLearning/blob/master/src/py2.x/ML/7.RandomForest/randomForest.py): <https://github.com/apachecn/AiLearning/blob/master/src/py2.x/ML/7.RandomForest/randomForest.py>
307+
[完整代码地址](https://github.com/apachecn/AiLearning/blob/master/src/py2.x/ml/7.RandomForest/randomForest.py): <https://github.com/apachecn/AiLearning/blob/master/src/py2.x/ml/7.RandomForest/randomForest.py>
308308

309309

310310
## AdaBoost
@@ -512,7 +512,7 @@ errArr = mat(ones((m, 1)))
512512
print m, errArr[predicting10 != mat(labelArrTest).T].sum(), errArr[predicting10 != mat(labelArrTest).T].sum()/m
513513
```
514514

515-
[完整代码地址](https://github.com/apachecn/AiLearning/blob/master/src/py2.x/ML/7.AdaBoost/adaboost.py): <https://github.com/apachecn/AiLearning/blob/master/src/py2.x/ML/7.AdaBoost/adaboost.py>
515+
[完整代码地址](https://github.com/apachecn/AiLearning/blob/master/src/py2.x/ml/7.AdaBoost/adaboost.py): <https://github.com/apachecn/AiLearning/blob/master/src/py2.x/ml/7.AdaBoost/adaboost.py>
516516

517517
#### 要点补充
518518

blog/ml/8.回归.md

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -82,7 +82,7 @@ HorsePower = 0.0015 * annualSalary - 0.99 * hoursListeningToPublicRadio
8282

8383
#### 1.5、线性回归 项目案例
8484

85-
[完整代码地址](../src/python/8.Regression/regression.py): <https://github.com/apachecn/AiLearning/blob/master/src/py2.x/ML/8.Regression/regression.py>
85+
[完整代码地址](/src/py2.x/ml/8.Regression/regression.py): <https://github.com/apachecn/AiLearning/blob/master/src/py2.x/ml/8.Regression/regression.py>
8686

8787
##### 1.5.1、线性回归 项目概述
8888

@@ -216,7 +216,7 @@ LWLR 使用 “核”(与支持向量机中的核类似)来对附近的点
216216

217217
#### 2.2、局部加权线性回归 项目案例
218218

219-
[完整代码地址](../src/python/8.Regression/regression.py): <https://github.com/apachecn/AiLearning/blob/master/src/py2.x/ML/8.Regression/regression.py>
219+
[完整代码地址](/src/py2.x/ml/8.Regression/regression.py): <https://github.com/apachecn/AiLearning/blob/master/src/py2.x/ml/8.Regression/regression.py>
220220

221221
##### 2.2.1、局部加权线性回归 项目概述
222222

@@ -351,7 +351,7 @@ def regression2():
351351

352352
### 3、线性回归 & 局部加权线性回归 项目案例
353353

354-
[完整代码地址](../src/python/8.Regression/regression.py): <https://github.com/apachecn/AiLearning/blob/master/src/py2.x/ML/8.Regression/regression.py>
354+
[完整代码地址](/src/py2.x/ml/8.Regression/regression.py): <https://github.com/apachecn/AiLearning/blob/master/src/py2.x/ml/8.Regression/regression.py>
355355

356356
到此为止,我们已经介绍了找出最佳拟合直线的两种方法,下面我们用这些技术来预测鲍鱼的年龄。
357357

@@ -475,7 +475,7 @@ def abaloneTest():
475475

476476
##### 4.1.1、岭回归 原始代码
477477

478-
[完整代码地址](../src/python/8.Regression/regression.py): <https://github.com/apachecn/AiLearning/blob/master/src/py2.x/ML/8.Regression/regression.py>
478+
[完整代码地址](/src/py2.x/ml/8.Regression/regression.py): <https://github.com/apachecn/AiLearning/blob/master/src/py2.x/ml/8.Regression/regression.py>
479479

480480
```python
481481
def ridgeRegres(xMat,yMat,lam=0.2):
@@ -589,7 +589,7 @@ def regression3():
589589
```
590590

591591
##### 4.3.1、前向逐步回归 原始代码
592-
[完整代码地址](../src/python/8.Regression/regression.py): <https://github.com/apachecn/AiLearning/blob/master/src/py2.x/ML/8.Regression/regression.py>
592+
[完整代码地址](/src/py2.x/ml/8.Regression/regression.py): <https://github.com/apachecn/AiLearning/blob/master/src/py2.x/ml/8.Regression/regression.py>
593593

594594
```python
595595
def stageWise(xArr,yArr,eps=0.01,numIt=100):
@@ -665,7 +665,7 @@ def regression4():
665665

666666
#### 项目案例1: 预测乐高玩具套装的价格
667667

668-
[完整代码地址](../src/python/8.Regression/regression.py): <https://github.com/apachecn/AiLearning/blob/master/src/py2.x/ML/8.Regression/regression.py>
668+
[完整代码地址](/src/py2.x/ml/8.Regression/regression.py): <https://github.com/apachecn/AiLearning/blob/master/src/py2.x/ml/8.Regression/regression.py>
669669

670670
##### 项目概述
671671

blog/ml/9.树回归.md

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -250,7 +250,7 @@ def createTree(dataSet, leafType=regLeaf, errType=regErr, ops=(1, 4)):
250250
retTree['right'] = createTree(rSet, leafType, errType, ops)
251251
return retTree
252252
```
253-
[完整代码地址](https://github.com/apachecn/AiLearning/blob/master/src/py2.x/ML/9.RegTrees/regTrees.py): <https://github.com/apachecn/AiLearning/blob/master/src/py2.x/ML/9.RegTrees/regTrees.py>
253+
[完整代码地址](https://github.com/apachecn/AiLearning/blob/master/src/py2.x/ml/9.RegTrees/regTrees.py): <https://github.com/apachecn/AiLearning/blob/master/src/py2.x/ml/9.RegTrees/regTrees.py>
254254

255255
> 测试算法:使用测试数据上的R^2值来分析模型的效果
256256
@@ -365,7 +365,7 @@ def prune(tree, testData):
365365
else:
366366
return tree
367367
```
368-
[完整代码地址](https://github.com/apachecn/AiLearning/blob/master/src/py2.x/ML/9.RegTrees/regTrees.py): <https://github.com/apachecn/AiLearning/blob/master/src/py2.x/ML/9.RegTrees/regTrees.py>
368+
[完整代码地址](https://github.com/apachecn/AiLearning/blob/master/src/py2.x/ml/9.RegTrees/regTrees.py): <https://github.com/apachecn/AiLearning/blob/master/src/py2.x/ml/9.RegTrees/regTrees.py>
369369

370370
## 3、模型树
371371

@@ -447,7 +447,7 @@ def linearSolve(dataSet):
447447
ws = xTx.I * (X.T * Y)
448448
return ws, X, Y
449449
```
450-
[完整代码地址](https://github.com/apachecn/AiLearning/blob/master/src/py2.x/ML/9.RegTrees/regTrees.py): <https://github.com/apachecn/AiLearning/blob/master/src/py2.x/ML/9.RegTrees/regTrees.py>
450+
[完整代码地址](https://github.com/apachecn/AiLearning/blob/master/src/py2.x/ml/9.RegTrees/regTrees.py): <https://github.com/apachecn/AiLearning/blob/master/src/py2.x/ml/9.RegTrees/regTrees.py>
451451

452452
### 3.3、模型树 运行结果
453453

@@ -581,7 +581,7 @@ def createForeCast(tree, testData, modelEval=regTreeEval):
581581
# print "yHat==>", yHat[i, 0]
582582
return yHat
583583
```
584-
[完整代码地址](https://github.com/apachecn/AiLearning/blob/master/src/py2.x/ML/9.RegTrees/regTrees.py): <https://github.com/apachecn/AiLearning/blob/master/src/py2.x/ML/9.RegTrees/regTrees.py>
584+
[完整代码地址](https://github.com/apachecn/AiLearning/blob/master/src/py2.x/ml/9.RegTrees/regTrees.py): <https://github.com/apachecn/AiLearning/blob/master/src/py2.x/ml/9.RegTrees/regTrees.py>
585585

586586
> 测试算法:使用测试数据上的R^2值来分析模型的效果
587587
@@ -615,7 +615,7 @@ MatPlotlib 的构建程序包含一个前端,也就是面向用户的一些代
615615

616616
![取得更好预测效果的GUI示例图](/img/ml/9.TreeRegression/GUI更好的示例图.png "取得更好预测效果的GUI示例图")
617617

618-
[完整代码地址](https://github.com/apachecn/AiLearning/blob/master/src/py2.x/ML/9.RegTrees/treeExplore.py): <https://github.com/apachecn/AiLearning/blob/master/src/py2.x/ML/9.RegTrees/treeExplore.py>
618+
[完整代码地址](https://github.com/apachecn/AiLearning/blob/master/src/py2.x/ml/9.RegTrees/treeExplore.py): <https://github.com/apachecn/AiLearning/blob/master/src/py2.x/ml/9.RegTrees/treeExplore.py>
619619

620620

621621
## 6、树回归 小结

0 commit comments

Comments
 (0)