-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCultural Algorithm Image Quantization.m
116 lines (106 loc) · 3.82 KB
/
Cultural Algorithm Image Quantization.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
%% Cultural Algorithm Image Quantization - Created in 16 Jan 2022 by Seyed Muhammad Hossein Mousavi
% This code, takes a input image and applies Otsu’s thresholding method
% based on user's threshold levels on
% image for quantization. Then the achieved vector from preview step sends
% to Cultural Algorithm cycle to be fitted even better. You can change
% parameters and input image as you desired.
% ------------------------------------------------
% Feel free to contact me if you find any problem using the code:
% Author: SeyedMuhammadHosseinMousavi
% My Email: mosavi.a.i.buali@gmail.com
% My Google Scholar: https://scholar.google.com/citations?user=PtvQvAQAAAAJ&hl=en
% My GitHub: https://github.com/SeyedMuhammadHosseinMousavi?tab=repositories
% My ORCID: https://orcid.org/0000-0001-6906-2152
% My Scopus: https://www.scopus.com/authid/detail.uri?authorId=57193122985
% My MathWorks: https://www.mathworks.com/matlabcentral/profile/authors/9763916#
% my RG: https://www.researchgate.net/profile/Seyed-Mousavi-17
% ------------------------------------------------
% Hope it help you, enjoy the code and wish me luck :)
%% Clearing Things
clc
clear
close all
warning ('off');
%% Data Load and Preparation
% Number of Threshold Levels
thresholdlvl=13;
%
%Loading Input Image
I = imread('eva.jpg');
% Convert To Gray
I=rgb2gray(I);
% Basic Multilevel Image Thresholds Using Otsu’s Method
Data = multithresh(I,thresholdlvl);
Data=Data';
Data=double(Data);
% Creating Inputs and Targets
Delays = [1];
[Inputs, Targets] = MakeTheTimeSeries(Data',Delays);
data.Inputs=Inputs;
data.Targets=Targets;
% Making Data
Inputs=data.Inputs';
Targets=data.Targets';
Targets=Targets(:,1);
nSample=size(Inputs,1);
% Creating Train Vector
pTrain=1.0;
nTrain=round(pTrain*nSample);
TrainInputs=Inputs(1:nTrain,:);
TrainTargets=Targets(1:nTrain,:);
TestInputs=Inputs(nTrain+1:end,:);
TestTargets=Targets(nTrain+1:end,:);
% Making Final Data Struct
data.TrainInputs=TrainInputs;
data.TrainTargets=TrainTargets;
data.TestInputs=TestInputs;
data.TestTargets=TestTargets;
%% Basic Fuzzy Model Creation
% Number of Clusters in FCM
ClusNum=2;
%
% Creating FIS
fis=GenerateFuzzy(data,ClusNum);
%% Tarining Cultural Algorithm
CulturalAlgorithmFis = CulturalFCN(fis,data);
%% Train Output Extraction
TrTar=data.TrainTargets;
TrainOutputs=evalfis(data.TrainInputs,CulturalAlgorithmFis);
% Train calculation
Errors=data.TrainTargets-TrainOutputs;
r0 = -1 ;
r1 = +1 ;
range = max(Errors) - min(Errors);
Errors = (Errors - min(Errors)) / range;
range2 = r1-r0;
Errors = (Errors * range2) + r0;
MSE=mean(Errors.^2);
RMSE=sqrt(MSE);
error_mean=mean(Errors);
error_std=std(Errors);
%% Results
% Basic Image Quantization
seg_I = imquantize(I,Data);
RGB = label2rgb(seg_I);
% Cultural Algorithm Image Quantization
TrainOutputs(thresholdlvl)=TrainOutputs(end)+1;
TrainOutputs=sort(TrainOutputs);
seg_I2 = imquantize(I,TrainOutputs);
RGB2 = label2rgb(seg_I2);
% Plot Results
figure('units','normalized','outerposition',[0 0 1 1])
subplot(2,2,1)
subimage(I); title('Original Eva');
subplot(2,2,2)
subimage(RGB);title('Basic Quantization');
subplot(2,2,3)
subimage(RGB2);title('Cultural Algorithm Quantization');
subplot(2,2,4)
imhist(rgb2gray(RGB2));title('Cultural Algorithm Image Histogram');
%% Cultural Algorithm Image Quantization Performance Statistics
fprintf('Cultural Algorithm MSE Is = %0.4f.\n',MSE)
fprintf('Cultural Algorithm RMSE Is = %0.4f.\n',RMSE)
fprintf('Cultural Algorithm Train Error Mean Is = %0.4f.\n',error_mean)
fprintf('Cultural Algorithm Train Error STD Is = %0.4f.\n',error_std)
fprintf('Basic VS Cultural Algorithm Error Is = %0.4f.\n',mse(rgb2gray(RGB),rgb2gray(RGB2)))
fprintf('Basic VS Cultural Algorithm PSNR Is = %0.4f.\n',psnr(rgb2gray(RGB),rgb2gray(RGB2)))