|
| 1 | +package com.thoughtworks.deeplearning.benchmark |
| 2 | + |
| 3 | +import java.util.concurrent.{ExecutorService, Executors} |
| 4 | + |
| 5 | +import com.thoughtworks.deeplearning.DeepLearning |
| 6 | +import com.thoughtworks.deeplearning.etl.Cifar100 |
| 7 | +import com.thoughtworks.deeplearning.etl.Cifar100.Batch |
| 8 | +import com.thoughtworks.deeplearning.plugins.Builtins |
| 9 | +import com.thoughtworks.feature.Factory |
| 10 | +import org.openjdk.jmh.annotations._ |
| 11 | +import com.thoughtworks.future._ |
| 12 | +import org.nd4j.linalg.api.ndarray.INDArray |
| 13 | +import org.nd4j.linalg.factory.Nd4j |
| 14 | + |
| 15 | +import scala.concurrent.{ExecutionContext, ExecutionContextExecutorService} |
| 16 | + |
| 17 | +/** |
| 18 | + * @author 杨博 (Yang Bo) |
| 19 | + */ |
| 20 | +object benchmark { |
| 21 | + |
| 22 | + import $exec.`https://gist.github.com/Atry/1fb0608c655e3233e68b27ba99515f16/raw/39ba06ee597839d618f2fcfe9526744c60f2f70a/FixedLearningRate.sc` |
| 23 | + |
| 24 | + trait LayerOutput { |
| 25 | + def numberOfFeatures: Int |
| 26 | + type Output |
| 27 | + def output: Output |
| 28 | + def typeClassInstance: DeepLearning.Aux[Output, INDArray, INDArray] |
| 29 | + } |
| 30 | + object LayerOutput { |
| 31 | + def input(indArray: INDArray): LayerOutput = new LayerOutput { |
| 32 | + def numberOfFeatures: Int = indArray.shape().apply(1) |
| 33 | + |
| 34 | + type Output = INDArray |
| 35 | + def output = indArray |
| 36 | + |
| 37 | + def typeClassInstance: DeepLearning.Aux[INDArray, INDArray, INDArray] = ??? |
| 38 | + } |
| 39 | + } |
| 40 | + |
| 41 | + @Threads(value = 1) |
| 42 | + @State(Scope.Benchmark) |
| 43 | + class FourLayer { |
| 44 | + |
| 45 | + @Param(Array("4")) |
| 46 | + protected var batchSize: Int = _ |
| 47 | + |
| 48 | + @Param(Array("1", "2", "4")) |
| 49 | + protected var sizeOfThreadPool: Int = _ |
| 50 | + |
| 51 | + @Param(Array("16", "32", "64")) |
| 52 | + protected var numberOfHiddenFeatures: Int = _ |
| 53 | + |
| 54 | + @Param(Array("16", "8")) |
| 55 | + protected var numberOfBranches: Int = _ |
| 56 | + |
| 57 | + private implicit var executionContext: ExecutionContextExecutorService = _ |
| 58 | + |
| 59 | + private lazy val batches = { |
| 60 | + val cifar100: Cifar100 = Cifar100.load().blockingAwait |
| 61 | + Iterator.continually(cifar100.epochByCoarseClass(batchSize)).flatten |
| 62 | + } |
| 63 | + |
| 64 | + class Model { |
| 65 | + val hyperparameters = Factory[Builtins with FixedLearningRate].newInstance(learningRate = 0.0001) |
| 66 | + |
| 67 | + import hyperparameters._, implicits._ |
| 68 | + |
| 69 | + object CoarseFeatures extends (INDArray => INDArrayLayer) { |
| 70 | + |
| 71 | + val branches = Seq.fill(numberOfBranches)(new (INDArray => INDArrayLayer) { |
| 72 | + object Dense1 extends (INDArray => INDArrayLayer) { |
| 73 | + val weight = INDArrayWeight(Nd4j.randn(Cifar100.NumberOfPixelsPerSample, numberOfHiddenFeatures)) |
| 74 | + val bias = INDArrayWeight(Nd4j.randn(1, numberOfHiddenFeatures)) |
| 75 | + |
| 76 | + def apply(input: INDArray) = { |
| 77 | + max(input dot weight + bias, 0.0) |
| 78 | + } |
| 79 | + } |
| 80 | + |
| 81 | + val weight = INDArrayWeight(Nd4j.randn(numberOfHiddenFeatures, numberOfHiddenFeatures)) |
| 82 | + val bias = INDArrayWeight(Nd4j.randn(1, numberOfHiddenFeatures)) |
| 83 | + |
| 84 | + def apply(input: INDArray) = { |
| 85 | + max(Dense1(input) dot weight + bias, 0.0) |
| 86 | + } |
| 87 | + }) |
| 88 | + |
| 89 | + def apply(input: INDArray) = { |
| 90 | + branches.map(_.apply(input)).reduce(_ + _) |
| 91 | + } |
| 92 | + } |
| 93 | + |
| 94 | + object CoarseProbabilityModel { |
| 95 | + val weight = INDArrayWeight(Nd4j.randn(numberOfHiddenFeatures, Cifar100.NumberOfCoarseClasses)) |
| 96 | + val bias = INDArrayWeight(Nd4j.randn(1, Cifar100.NumberOfCoarseClasses)) |
| 97 | + |
| 98 | + def apply(input: INDArrayLayer) = { |
| 99 | + val scores = input dot weight + bias |
| 100 | + |
| 101 | + val expScores = exp(scores) |
| 102 | + expScores / expScores.sum(1) |
| 103 | + } |
| 104 | + } |
| 105 | + |
| 106 | + val fineProbabilityModel = Seq.fill(Cifar100.NumberOfCoarseClasses)(new (INDArrayLayer => INDArrayLayer) { |
| 107 | + object Dense2 extends (INDArrayLayer => INDArrayLayer) { |
| 108 | + |
| 109 | + object Dense1 extends (INDArrayLayer => INDArrayLayer) { |
| 110 | + val weight = INDArrayWeight(Nd4j.randn(numberOfHiddenFeatures, numberOfHiddenFeatures)) |
| 111 | + val bias = INDArrayWeight(Nd4j.randn(1, numberOfHiddenFeatures)) |
| 112 | + |
| 113 | + def apply(coarseFeatures: INDArrayLayer) = { |
| 114 | + max(coarseFeatures dot weight + bias, 0.0) |
| 115 | + } |
| 116 | + } |
| 117 | + |
| 118 | + val weight = INDArrayWeight(Nd4j.randn(numberOfHiddenFeatures, numberOfHiddenFeatures)) |
| 119 | + val bias = INDArrayWeight(Nd4j.randn(1, numberOfHiddenFeatures)) |
| 120 | + |
| 121 | + def apply(coarseFeatures: INDArrayLayer) = { |
| 122 | + max(Dense1(coarseFeatures) dot weight + bias, 0.0) |
| 123 | + } |
| 124 | + } |
| 125 | + |
| 126 | + val weight = INDArrayWeight(Nd4j.randn(numberOfHiddenFeatures, Cifar100.NumberOfFineClassesPerCoarseClass)) |
| 127 | + val bias = INDArrayWeight(Nd4j.randn(1, Cifar100.NumberOfFineClassesPerCoarseClass)) |
| 128 | + |
| 129 | + def apply(coarseFeatures: INDArrayLayer) = { |
| 130 | + val scores = Dense2(coarseFeatures) dot weight + bias |
| 131 | + |
| 132 | + val expScores = exp(scores) |
| 133 | + expScores / expScores.sum(1) |
| 134 | + } |
| 135 | + }) |
| 136 | + |
| 137 | + def loss(coarseLabel: Int, batch: Batch): DoubleLayer = { |
| 138 | + def crossEntropy(prediction: INDArrayLayer, expectOutput: INDArray): DoubleLayer = { |
| 139 | + -(hyperparameters.log(prediction) * expectOutput).mean |
| 140 | + } |
| 141 | + |
| 142 | + val Array(batchSize, width, height, channels) = batch.pixels.shape() |
| 143 | + val coarseFeatures = CoarseFeatures(batch.pixels.reshape(batchSize, width * height * channels)) |
| 144 | + val coarseProbabilities = CoarseProbabilityModel(coarseFeatures) |
| 145 | + val fineProbabilities = fineProbabilityModel(coarseLabel)(coarseFeatures) |
| 146 | + |
| 147 | + crossEntropy(coarseProbabilities, batch.coarseClasses) + crossEntropy(fineProbabilities, batch.localFineClasses) |
| 148 | + } |
| 149 | + |
| 150 | + def train(coarseLabel: Int, batch: Batch) = { |
| 151 | + loss(coarseLabel, batch).train |
| 152 | + } |
| 153 | + |
| 154 | + } |
| 155 | + |
| 156 | + private var model: Model = null |
| 157 | + |
| 158 | + @Setup |
| 159 | + final def setup(): Unit = { |
| 160 | + executionContext = ExecutionContext.fromExecutorService(Executors.newFixedThreadPool(sizeOfThreadPool)) |
| 161 | + model = new Model |
| 162 | + } |
| 163 | + |
| 164 | + @TearDown |
| 165 | + final def tearDown(): Unit = { |
| 166 | + model = null |
| 167 | + executionContext.shutdown() |
| 168 | + executionContext = null |
| 169 | + } |
| 170 | + |
| 171 | + @Benchmark |
| 172 | + final def deepLearningDotScala(): Double = { |
| 173 | + val (coarseClass, batch) = batches.synchronized { |
| 174 | + batches.next() |
| 175 | + } |
| 176 | + model.train(coarseClass, batch).blockingAwait |
| 177 | + } |
| 178 | + |
| 179 | + } |
| 180 | + |
| 181 | +} |
0 commit comments