You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: ✅ Pattern 15: 0-1 Knapsack (Dynamic Programming).md
+18-23Lines changed: 18 additions & 23 deletions
Original file line number
Diff line number
Diff line change
@@ -117,7 +117,7 @@ console.log(`7th Fibonacci is ---> ${calculateFibonacci(7)}`);
117
117
Let’s apply this knowledge to solve some of the frequently asked <b>DP</b> problems.
118
118
119
119
# Pattern 1: 0/1 Knapsack
120
-
<b>Problem Set</b>
120
+
## Problem Set
121
121
122
122
[🔎 0/1 Knapsack](#🔎-01-knapsack-medium)
123
123
@@ -1550,7 +1550,7 @@ console.log(
1550
1550
```
1551
1551
1552
1552
# Pattern 2: Unbounded Knapsack
1553
-
<b>Problem Set</b>
1553
+
## Problem Set
1554
1554
1555
1555
[Unbounded Knapsack](#unbounded-knapsack)
1556
1556
@@ -2520,7 +2520,7 @@ console.log(
2520
2520
- The above solution has time and <b>space complexity</b> of `O(L*N)`, where `L` represents total ribbon lengths and `N` is the total length that we want to cut.
2521
2521
2522
2522
# Pattern 3: Fibonacci Numbers
2523
-
<b>Problem Set</b>
2523
+
## Problem Set
2524
2524
2525
2525
[Fibonacci numbers](#fibonacci-numbers)
2526
2526
@@ -3307,7 +3307,7 @@ We can clearly see that this problem follows the <b>[Fibonacci number pattern](#
0 commit comments