Open
Description
Describe the bug
SageMaker adds wrongly /
when using S3DataSource
where files are stored in an nested order, see screenshot of how my s3 directory looks.
To reproduce
- Have a model with a nested structure, e.g. Stable Diffusion
- try to deploy the model using
S3DataSource
, e.g. below
from sagemaker.huggingface.model import HuggingFaceModel
# create Hugging Face Model Class
huggingface_model = HuggingFaceModel(
model_data={'S3DataSource':{'S3Uri': s3_model_uri + "/",'S3DataType': 'S3Prefix','CompressionType': 'None'}},
role=role, # iam role with permissions to create an Endpoint
transformers_version="4.34.1", # transformers version used
pytorch_version="1.13.1", # pytorch version used
py_version='py310', # python version used
model_server_workers=1, # number of workers for the model server
)
# deploy the endpoint endpoint
predictor = huggingface_model.deploy(
initial_instance_count=1, # number of instances
instance_type="ml.inf2.xlarge", # AWS Inferentia Instance
volume_size = 100
)
# ignore the "Your model is not compiled. Please compile your model before using Inferentia." warning, we already compiled our model.
Expected behavior
Deployed endpoint
Screenshots or logs
Error: UnexpectedStatusException: Error hosting endpoint huggingface-pytorch-inference-neuronx-2023-11-07-14-07-46-274: Failed. Reason: error: Key of model data S3 object 's3://sagemaker-us-east-2-558105141721/neuronx/sdxl//text_encoder/model.neuron' maps to invalid local file path..
System information
A description of your system. Please provide:
- SageMaker Python SDK version: 2.197.0
- Framework name (eg. PyTorch) or algorithm (eg. KMeans): huggingface
- Framework version: 3.41.1
- Python version: py310
- CPU or GPU: Inf2
- Custom Docker image (Y/N): N
Additional context
Add any other context about the problem here.