Releases: aws/sagemaker-python-sdk
Releases · aws/sagemaker-python-sdk
SageMaker Python SDK 1.14.2
- bug-fix: support
CustomAttributes
argument in local modeinvoke_endpoint
requests - enhancement: add
content_type
parameter tosagemaker.tensorflow.serving.Predictor
- doc-fix: add TensorFlow Serving Container docs
- doc-fix: fix rendering error in README.rst
- enhancement: Local Mode: support optional input channels
- build: added pylint
- build: upgrade docker-compose to 1.23
- enhancement: Frameworks: update warning for not setting framework_version as we aren't planning a breaking change anymore
- enhancement: Session: remove hardcoded 'training' from job status error message
- bug-fix: Updated Cloudwatch namespace for metrics in TrainingJobsAnalytics
SageMaker Python SDK 1.14.1
- feature: Estimators: add support for Amazon Object2Vec algorithm
SageMaker Python SDK 1.14.0
- feature: add support for sagemaker-tensorflow-serving container
- feature: Estimator: make input channels optional
SageMaker Python SDK 1.13.0
- feature: Estimator: add input mode to training channels
- feature: Estimator: add model_uri and model_channel_name parameters
- enhancement: Local Mode: support output_path. Can be either file:// or s3://
- enhancement: Added image uris for SageMaker built-in algorithms for SIN/LHR/BOM/SFO/YUL
- feature: Estimators: add support for MXNet 1.3.0, which introduces a new training script format
- feature: Documentation: add explanation for the new training script format used with MXNet
- feature: Estimators: add
distributions
for customizing distributed training with the new training script format
SageMaker Python SDK 1.12.0
- feature: add support for TensorFlow 1.11.0
SageMaker Python SDK 1.11.3
- feature: Local Mode: Add support for Batch Inference
- feature: Add timestamp to secondary status in training job output
- bug-fix: Local Mode: Set correct default values for additional_volumes and additional_env_vars
- enhancement: Local Mode: support nvidia-docker2 natively
- warning: Frameworks: add warning for upcoming breaking change that makes framework_version required
SageMaker Python SDK 1.11.2
- enhancement: Enable setting VPC config when creating/deploying models
- enhancement: Local Mode: accept short lived credentials with a warning message
- bug-fix: Local Mode: pass in job name as parameter for training environment variable
SageMaker Python SDK 1.11.1
- enhancement: Local Mode: add training environment variables for AWS region and job name
- doc-fix: Instruction on how to use preview version of PyTorch - 1.0.0.dev.
- doc-fix: add role to MXNet estimator example in readme
- bug-fix: default TensorFlow json serializer accepts dict of numpy arrays
SageMaker Python SDK 1.11.0
- bug-fix: setting health check timeout limit on local mode to 30s
- bug-fix: make Hyperparameters in local mode optional.
- enhancement: add support for volume KMS key to Transformer
- feature: add support for GovCloud
SageMaker Python SDK 1.10.1
- feature: add train_volume_kms_key parameter to Estimator classes
- doc-fix: add deprecation warning for current MXNet training script format
- doc-fix: add docs on deploying TensorFlow model directly from existing model
- doc-fix: fix code example for using Gzip compression for TensorFlow training data