@@ -49,12 +49,52 @@ def random_data():
49
49
"z1" : np .random .standard_normal (size = (32 , 2 )),
50
50
"p1" : np .random .lognormal (size = (32 , 2 )),
51
51
"p2" : np .random .lognormal (size = (32 , 2 )),
52
+ "p3" : np .random .lognormal (size = (32 , 2 )),
53
+ "n1" : 1 - np .random .lognormal (size = (32 , 2 )),
52
54
"s1" : np .random .standard_normal (size = (32 , 3 , 2 )),
53
55
"s2" : np .random .standard_normal (size = (32 , 3 , 2 )),
54
56
"t1" : np .zeros ((3 , 2 )),
55
57
"t2" : np .ones ((32 , 3 , 2 )),
56
58
"d1" : np .random .standard_normal (size = (32 , 2 )),
57
59
"d2" : np .random .standard_normal (size = (32 , 2 )),
58
60
"o1" : np .random .randint (0 , 9 , size = (32 , 2 )),
61
+ "u1" : np .random .uniform (low = - 1 , high = 2 , size = (32 , 1 )),
59
62
"key_to_split" : np .random .standard_normal (size = (32 , 10 )),
60
63
}
64
+
65
+
66
+ @pytest .fixture ()
67
+ def adapter_jacobian ():
68
+ from bayesflow .adapters import Adapter
69
+
70
+ adapter = (
71
+ Adapter ()
72
+ .scale ("x1" , by = 2 )
73
+ .log ("p1" , p1 = True )
74
+ .sqrt ("p2" )
75
+ .constrain ("p3" , lower = 0 )
76
+ .constrain ("n1" , upper = 1 )
77
+ .constrain ("u1" , lower = - 1 , upper = 2 )
78
+ .concatenate (["p1" , "p2" , "p3" ], into = "p" )
79
+ .rename ("u1" , "u" )
80
+ )
81
+
82
+ return adapter
83
+
84
+
85
+ @pytest .fixture ()
86
+ def adapter_jacobian_inverse ():
87
+ from bayesflow .adapters import Adapter
88
+
89
+ adapter = (
90
+ Adapter ()
91
+ .standardize ("x1" , mean = 1 , std = 2 )
92
+ .log ("p1" )
93
+ .sqrt ("p2" )
94
+ .constrain ("p3" , lower = 0 , method = "log" )
95
+ .constrain ("n1" , upper = 1 , method = "log" )
96
+ .constrain ("u1" , lower = - 1 , upper = 2 )
97
+ .scale (["p1" , "p2" , "p3" ], by = 3.5 )
98
+ )
99
+
100
+ return adapter
0 commit comments