Description
the trinterp() method does not make sure quaternions are valid before converting them to transforms. It calls qslerp which can sometimes generate invalid quaternions.
Repro:
from spatialmath import SE3
se3_1 = SE3()
se3_1.t = np.array([0.5705748101710814, 0.29623210833184527, 0.10764106509086407])
se3_1.R = np.array([[ 0.2852875203191073 , 0.9581330588259315 ,
-0.024332536551692617],
[ 0.9582072394229962 , -0.28568756930438033 ,
-0.014882844564011068],
[-0.021211248608609852, -0.019069722856395098,
-0.9995931315303468 ]])
assert SE3.isvalid(se3_1.A)
se3_2 = SE3()
se3_2.t = np.array([0.5150284150005691 , 0.25796537207802533, 0.1558725490743694])
se3_2.R = np.array([[ 0.42058255728234184 , 0.9064420651629983 ,
-0.038380919906699236 ],
[ 0.9070822373513454 , -0.4209501599465646 ,
-0.0016665901233428627],
[-0.01766712176680449 , -0.0341137119645545 ,
-0.9992617912561634 ]])
assert SE3.isvalid(se3_2.A)
path_se3 = se3_1.interp(end=se3_2, s=15, shortest=False)
print(path_se3[2])
-> 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
print(path_se3[3])
-> 0.3149 0.9487 -0.0275 0.5587
0.9489 -0.3153 -0.01222 0.288
-0.02027 -0.02225 -0.9995 0.118
0 0 0 1
The interp() method returns an SE3 object that holds the SE3 transformation matrices created from the interpolation:
spatialmath-python/spatialmath/baseposematrix.py
Lines 449 to 455 in 4c68fa9
However, there is a validity check in the SE3 object that will turn any invalid transforms into identity matrices.
A possible solution is to modify the trinterp() method to turn all quaternions into unit quaternions before converting them into rotation matrices:
spatialmath-python/spatialmath/base/transforms3d.py
Lines 1697 to 1700 in 4c68fa9
I am not sure if this is the only location in the spatialmath codebase that would benefit from this change.