Skip to content

trinterp() returns invalid rotations in transform matrix #165

Open
@tweng-bdai

Description

@tweng-bdai

the trinterp() method does not make sure quaternions are valid before converting them to transforms. It calls qslerp which can sometimes generate invalid quaternions.

Repro:

from spatialmath import SE3

se3_1 = SE3()
se3_1.t = np.array([0.5705748101710814, 0.29623210833184527, 0.10764106509086407])
se3_1.R = np.array([[ 0.2852875203191073  ,  0.9581330588259315  ,
    -0.024332536551692617],
   [ 0.9582072394229962  , -0.28568756930438033 ,
    -0.014882844564011068],
   [-0.021211248608609852, -0.019069722856395098,
    -0.9995931315303468  ]])
assert SE3.isvalid(se3_1.A)

se3_2 = SE3()
se3_2.t = np.array([0.5150284150005691 , 0.25796537207802533, 0.1558725490743694])
se3_2.R = np.array([[ 0.42058255728234184  ,  0.9064420651629983   ,
    -0.038380919906699236 ],
   [ 0.9070822373513454   , -0.4209501599465646   ,
    -0.0016665901233428627],
   [-0.01766712176680449  , -0.0341137119645545   ,
    -0.9992617912561634   ]])
assert SE3.isvalid(se3_2.A)

path_se3 = se3_1.interp(end=se3_2, s=15, shortest=False)
print(path_se3[2])
->   1         0         0         0         
     0         1         0         0         
     0         0         1         0         
     0         0         0         1    
print(path_se3[3])
->   0.3149    0.9487   -0.0275    0.5587    
     0.9489   -0.3153   -0.01222   0.288     
    -0.02027  -0.02225  -0.9995    0.118     
     0         0         0         1   

The interp() method returns an SE3 object that holds the SE3 transformation matrices created from the interpolation:

# SO(3) or SE(3)
return self.__class__(
[
smb.trinterp(start=self.A, end=end, s=_s, shortest=shortest)
for _s in s
]
)
.

However, there is a validity check in the SE3 object that will turn any invalid transforms into identity matrices.

A possible solution is to modify the trinterp() method to turn all quaternions into unit quaternions before converting them into rotation matrices:

qr = qslerp(q0, q1, s, shortest=shortest)
pr = p0 * (1 - s) + s * p1
return rt2tr(q2r(qr), pr)
.

I am not sure if this is the only location in the spatialmath codebase that would benefit from this change.

Metadata

Metadata

Assignees

Labels

bugSomething isn't working

Type

No type

Projects

No projects

Milestone

No milestone

Relationships

None yet

Development

No branches or pull requests

Issue actions