forked from bloominstituteoftechnology/Computer-Architecture
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathls8.py
executable file
·400 lines (343 loc) · 12.4 KB
/
ls8.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
import sys
import os
from utils import flush_input, pause
from pynput import keyboard
from datetime import datetime
class CPU:
def __init__(self):
# reserved register addresses
self.IM = 5
self.IS = 6
self.SP = 7
# initialize data containers
self.reset()
# Outer run loop status that allows input to be read in
self.cpu_is_active = True
# alu operation table
self.alutable = {
0b0000: "ADD",
0b0001: "SUB",
0b0010: "MUL",
0b0011: "DIV",
0b0100: "MOD",
0b0101: "INC",
0b0110: "DEC",
0b0111: "CMP",
0b1000: "AND",
0b1001: "NOT",
0b1010: "OR",
0b1011: "XOR",
0b1100: "SHL",
0b1101: "SHR"
}
# jump functions
self.jumptable = {
0b0000: self.CALL,
0b0001: self.RET,
0b0010: self.INT,
0b0011: self.IRET,
0b0100: self.JMP,
0b0101: self.JEQ,
0b0110: self.JNE,
0b0111: self.JGT,
0b1000: self.JLT,
0b1001: self.JLE,
0b1010: self.JGE
}
# non-alu instruction definitions
self.branchtable = {
0b0001: self.HLT,
0b0010: self.LDI,
0b0011: self.LD,
0b0100: self.ST,
0b0101: self.PUSH,
0b0110: self.POP,
0b0111: self.PRN,
0b1000: self.PRA
}
def ram_read(self, address):
return self.ram[address]
def ram_write(self, address, value):
self.ram[address] = value
def reset(self):
self.ram = [0] * 256 # RAM initialization
self.reg = [0] * 8 # Data register initialization
self.PC = 0 # Program Counter initialization
self.running = False # Program run status initialization
self.FL = 0b00000000 # Comparison flag initialization
# Interrupt property initializations
self.time = None # init with datetime.now() on run to handle timer interrupt
self.keyboard_listener = None
# initialize reserved registers
self.reg[self.IM] = 0b00000001
self.reg[self.IS] = 0b00000000
self.reg[self.SP] = 0xF4
def load(self, prog_file):
self.reset()
program = []
with open(prog_file) as f:
for line in f:
x = line.split()
if len(x) == 0 or x[0][0] == "#":
continue
try:
program.append(int(x[0], 2))
except ValueError:
print(f"Invalid value: {x[0]}")
break
address = 0
for instruction in program:
self.ram[address] = instruction
address += 1
def PUSH(self, reg_index, *args):
value = self.reg[reg_index]
self.reg[self.SP] -= 1
self.ram_write(self.reg[self.SP], value)
def POP(self, reg_index, *args):
value = self.ram_read(self.reg[self.SP])
self.reg[self.SP] += 1
self.reg[reg_index] = value
def alu(self, op, reg_a=None, reg_b=None):
if op == "ADD":
self.reg[reg_a] += self.reg[reg_b]
elif op == "SUB":
self.reg[reg_a] -= self.reg[reg_b]
elif op == "DEC":
self.reg[reg_a] -= 1
elif op == "INC":
self.reg[reg_a] += 1
elif op == "MUL":
self.reg[reg_a] *= self.reg[reg_b]
elif op == "DIV":
self.reg[reg_a] /= self.reg[reg_b]
elif op == "MOD":
self.reg[reg_a] %= self.reg[reg_b]
elif op == "AND":
self.reg[reg_a] &= self.reg[reg_b]
elif op == "OR":
self.reg[reg_a] |= self.reg[reg_b]
elif op == "NOT":
# calculate bitwise not with XOR mask
self.reg[reg_a] ^= 0b11111111
elif op == "XOR":
self.reg[reg_a] ^= self.reg[reg_b]
elif op == "SHL":
self.reg[reg_a] <<= self.reg[reg_b]
elif op == "SHR":
self.reg[reg_a] >>= self.reg[reg_b]
elif op == "CMP":
diff = self.reg[reg_a] - self.reg[reg_b]
if diff < 0:
self.FL = 0b100
elif diff > 0:
self.FL = 0b010
else:
self.FL = 0b001
else:
raise Exception("Unsupported ALU operation")
def HLT(self, *args):
self.running = False
def LDI(self, reg_index, value):
self.reg[reg_index] = value
def LD(self, reg_a, reg_b):
self.reg[reg_a] = self.ram_read(self.reg[reg_b])
def ST(self, reg_a, reg_b):
self.ram_write(self.reg[reg_a], self.reg[reg_b])
def PRN(self, reg_index, *args):
print(self.reg[reg_index])
def PRA(self, reg_index, *args):
print(chr(self.reg[reg_index]))
# Jump Methods
def CALL(self, reg_index, *args):
next_index = self.PC + 2
self.PC = self.reg[reg_index]
self.reg[self.SP] -= 1
self.ram_write(self.reg[self.SP], next_index)
def RET(self, *args):
self.PC = self.ram_read(self.reg[self.SP])
self.reg[self.SP] += 1
def JMP(self, reg_index, *args):
self.PC = self.reg[reg_index]
def JNE(self, reg_index, *args):
test = 0b001
if self.FL != test:
self.PC = self.reg[reg_index]
else:
self.PC += 2
def JEQ(self, reg_index, *args):
test = 0b001
if self.FL & test > 0:
self.PC = self.reg[reg_index]
else:
self.PC += 2
def JGT(self, reg_index, *args):
test = 0b010
if self.FL & test > 0:
self.PC = self.reg[reg_index]
else:
self.PC += 2
def JGE(self, reg_index, *args):
test = 0b011
if self.FL & test > 0:
self.PC = self.reg[reg_index]
else:
self.PC += 2
def JLT(self, reg_index, *args):
test = 0b100
if self.FL & test > 0:
self.PC = self.reg[reg_index]
else:
self.PC += 2
def JLE(self, reg_index, *args):
test = 0b101
if self.FL & test > 0:
self.PC = self.reg[reg_index]
else:
self.PC += 2
def INT(self, reg_index, *args):
# For now, I can't use this
pass
def IRET(self, *args):
# pop registers 6-0 off the stack in that order
for i in range(7):
self.reg[6 - i] = self.ram_read(self.reg[self.SP])
self.reg[self.SP] += 1
self.FL = self.ram_read(self.reg[self.SP])
self.reg[self.SP] += 1
self.PC = self.ram_read(self.reg[self.SP])
self.reg[self.SP] += 1
# Interrupt methods
def timer_interrupt_check(self):
x = datetime.now()
if (x - self.time).seconds >= 1:
self.time = x
self.reg[self.IS] |= 0b00000001
def keyboard_listener_start(self):
# keypress handler that sets the proper IS bit
def on_press(key):
if key == keyboard.Key.esc:
self.running = False
else:
if str(key)[:4] != "Key.":
if (str(key)[0] == "<" and str(key)[-1] == ">"):
return
self.reg[self.IS] |= 0b00000010
x = ord(str(key)[1])
self.ram_write(0xf4, x & 255)
# keyboard listener start code
self.keyboard_listener = keyboard.Listener(on_press=on_press)
self.keyboard_listener.start()
def keyboard_listener_stop(self):
self.keyboard_listener.stop()
# Run function subroutines
def check_interrupt_status(self):
# interrupt checking
if self.reg[self.IS] != 0:
masked_interrupts = self.reg[self.IM] & self.reg[self.IS]
cur_bit = 0
interrupted = False
while cur_bit < 8 and not interrupted:
interrupted = ((masked_interrupts >> cur_bit) & 1) == 1
if interrupted:
# clear the bit
self.reg[self.IS] ^= 1 << cur_bit
# push PC onto stack
self.reg[self.SP] -= 1
self.ram_write(self.reg[self.SP], self.PC)
# push FL onto stack
self.reg[self.SP] -= 1
self.ram_write(self.reg[self.SP], self.FL)
# push R0-R6 onto stack in that order
for i in range(7):
self.reg[self.SP] -= 1
self.ram_write(self.reg[self.SP], self.reg[i])
self.PC = self.ram_read(0xF8 + cur_bit)
cur_bit += 1
def read_instruction(self, ir):
# pull out the relevant data from the IR to be processed
instruction_code = ir & 0b1111
setsPC = (ir >> 4) & 0b1
isALU = (ir >> 5) & 0b1
num_args = ir >> 6
# grab arguments from the next 2 ram registers
arg_a = self.ram[self.PC + 1]
arg_b = self.ram[self.PC + 2]
# if it's an alu function, process it through the alu
if isALU:
self.alu(self.alutable[instruction_code], arg_a, arg_b)
# if it's a jump function, process accordingly
elif setsPC:
self.jumptable[instruction_code](arg_a, arg_b)
else:
# this if handles 0b00000000 non-op codes
if instruction_code != 0:
self.branchtable[instruction_code](arg_a, arg_b)
# after a non-jump function, increment the pc
if not setsPC:
self.PC += num_args + 1
def print_help(self):
print("*************************************\n" +
"* exit -> power off the LS-8 *\n" +
"* list -> list available programs *\n" +
"* help -> display this message *\n" +
"* press 'esc' to exit program loops *\n" +
"*************************************")
pause()
def print_directory_list(self):
print("Available Programs:")
for item in os.listdir("./programs"):
print(item)
pause()
def run(self):
print("********************************\n" +
"* *\n" +
"* ------------------------ *\n" +
"* | Welcome to the LS-8! | *\n" +
"* ------------------------ *\n" +
"* *\n" +
"********************************\n")
self.print_help()
while self.cpu_is_active:
# red in user input
prog_name = input("Enter program name:\n>> ")
program_has_run = False
# handle 'exit' code
if prog_name.lower() == "exit":
self.cpu_is_active = False
# handle 'help' code
elif prog_name.lower() == "help":
self.print_help()
# handle 'list' code
elif prog_name.lower() == "list":
self.print_directory_list()
# else load the program into the file
else:
try:
if len(prog_name) <= 4 or prog_name[-4:] != ".ls8":
prog_name += ".ls8"
self.load(f"programs/{prog_name}")
self.running = True
except FileNotFoundError:
print(f"Couldn't open file {prog_name}.\n")
# Initialize CPU properties for interrupts
self.time = datetime.now()
self.keyboard_listener_start()
while self.running:
program_has_run = True
self.check_interrupt_status()
self.timer_interrupt_check()
# grab the IR
ir = self.ram[self.PC]
# read each instruction code then go to next loop iteration
self.read_instruction(ir)
# prompt user that run is complete
if program_has_run:
print("\nProgram execution complete.")
pause()
# clear listener after while loop ends
self.keyboard_listener_stop()
# clear the input buffer to handle presses in peyboard interrupt test
flush_input()
if __name__ == "__main__":
cpu = CPU()
cpu.run()