Skip to content

Commit 46a2293

Browse files
committed
edit readme
1 parent eb6545a commit 46a2293

File tree

1 file changed

+30
-3
lines changed

1 file changed

+30
-3
lines changed

README.md

+30-3
Original file line numberDiff line numberDiff line change
@@ -7,29 +7,56 @@ At present, the accuracy of the paper cannot be achieved. And i borrowed code fr
77
**model**
88
<img src='./demo_image/SRN.png'>
99

10+
**result**
11+
| IIIT5k_3000 | SVT | IC03_860 | IC03_867 | IC13_857 | IC13_1015 | IC15_1811 | IC15_2077 | SVTP | CUTE80 |
12+
| ----------- | ------| ---------| ---------| ---------| --------- | ----------| --------- | ---- | ------ |
13+
| 84.600 | 83.617| 92.907 | 92.849 | 90.315 | 88.177 | 71.010 | 68.064 | 71.008 | 68.641 |
1014

15+
**total_accuracy: 80.597**
16+
17+
---
1118

1219
**Feature**
1320
- predict the character at once time
1421
- DistributedDataParallel training
1522

1623

1724

25+
1826
---
1927
## Requirements
2028
Pytorch >= 1.1.0
2129

2230

2331
## Test
24-
coming soon ...
32+
1. download the evaluation data from [deep-text-recognition-benchmark](https://github.com/clovaai/deep-text-recognition-benchmark)
33+
34+
2. download the pretrained model from [Baidu](https://pan.baidu.com/s/1E5xeajIl_fvtrGWyrE9CeA), Password: d2qn
35+
36+
3. test on the evaluation data
37+
```bash
38+
python test.py --eval_data path-to-data --saved_model path-to-model
39+
```
2540

2641
---
2742

2843
## Train
29-
coming soon ...
44+
1. download the training data from [deep-text-recognition-benchmark](https://github.com/clovaai/deep-text-recognition-benchmark)
45+
46+
2. training from scratch
47+
```bash
48+
python train.py --train_data path-to-train-data --valid-data path-to-valid-data
49+
```
3050

3151
## Reference
3252
1. [bert_ocr.pytorch](https://github.com/chenjun2hao/Bert_OCR.pytorch)
3353
2. [deep-text-recognition-benchmark](https://github.com/clovaai/deep-text-recognition-benchmark)
3454
3. [2D Attentional Irregular Scene Text Recognizer](https://arxiv.org/pdf/1906.05708.pdf)
35-
4. [Towards Accurate Scene Text Recognition with Semantic Reasoning Networks](https://arxiv.org/abs/2003.12294)
55+
4. [Towards Accurate Scene Text Recognition with Semantic Reasoning Networks](https://arxiv.org/abs/2003.12294)
56+
57+
## difference with the origin paper
58+
- use resnet for 1D feature not resnetFpn 2D feature
59+
- use add not gated unit for visual-semanti fusion decoder
60+
61+
## other
62+
It is difficult to achieve the accuracy of the paper, hope more people to try and share

0 commit comments

Comments
 (0)