-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdiffrle.go
503 lines (459 loc) · 10.3 KB
/
diffrle.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
package diffrle
import (
"fmt"
"github.com/tidwall/btree"
)
// for items of len 1 step doesn't really matter,
// but having some non-0 number helps to not worry about zeroes
const defaultStep = 1
// seq is a struct to store range (FirstID is a key in btree)
type seq struct {
Step int64
Count int64
}
// Range of sequential values, evenly spaced by step
type Range struct {
FirstID int64
Step int64
Count int64
}
func (r Range) String() string {
return fmt.Sprintf("<%d|%d:%d|%d>", r.FirstID, r.Step, r.Count, r.LastID())
}
// LastID returns last id of the range
func (r Range) LastID() int64 {
if r.Step == 0 {
return r.FirstID
}
return r.FirstID + (r.Count-1)*r.Step
}
// ContainsID return true if id is in this range
func (r Range) ContainsID(id int64) bool {
if r.Step == 0 {
return id == r.FirstID
}
return id >= r.FirstID && id <= r.LastID() && (id-r.FirstID)%r.Step == 0
}
// Set that is optimized for storing sequential IDs
type Set struct {
m *btree.Map[int64, seq]
}
// NewSet returns empty set
func NewSet(degree int) *Set {
return &Set{
m: btree.NewMap[int64, seq](degree),
}
}
// NewSetFromRanges returns set initialized with ranges
func NewSetFromRanges(degree int, rr []Range) *Set {
m := btree.NewMap[int64, seq](degree)
for _, v := range rr {
m.Set(v.FirstID, seq{
Count: v.Count,
Step: v.Step,
})
}
return &Set{
m: m,
}
}
// Exists returns true if ID exists in set
func (s Set) Exists(id int64) bool {
var prev *Range
s.m.Descend(id, func(key int64, df seq) bool {
prev = &Range{
FirstID: key,
Step: df.Step,
Count: df.Count,
}
return false
})
if prev == nil {
return false
}
return prev.ContainsID(id)
}
func (s Set) setRange(r *Range) {
if r.Count <= 0 {
panic("critical bug in diffrle library, count <=0 during insert")
}
if r.Step <= 0 {
panic("critical bug in diffrle library, step <=0 during insert")
}
s.m.Set(r.FirstID, seq{
Step: r.Step,
Count: r.Count,
})
}
// Compacts items around provided key
func (s Set) compactAdjacentRanges(r *Range) {
if r == nil {
return
}
// compact ranges to the left, we don't expect more than 2 iterations
for {
var prev *Range
s.m.Descend(r.FirstID-1, func(key int64, df seq) bool {
prev = &Range{
FirstID: key,
Step: df.Step,
Count: df.Count,
}
return false
})
merged := s.compactRanges(prev, r)
if merged != nil {
r = merged
}
if merged == nil {
break
}
}
// compact ranges to the right
for {
var next *Range
s.m.Ascend(r.LastID()+1, func(key int64, df seq) bool {
next = &Range{
FirstID: key,
Step: df.Step,
Count: df.Count,
}
return false
})
merged := s.compactRanges(r, next)
if merged != nil {
r = merged
}
if merged == nil {
break
}
}
}
// compacts ranges so that they take less space
// either 2 ranges are compacted into a single one
// or IDs are moved from smaller ranges to bigger ranges, allowing for smaller
// ranges to be merged into other ranges in future
func (s Set) compactRanges(r1 *Range, r2 *Range) *Range {
if r1 == nil || r2 == nil {
return nil
}
if r1.FirstID > r2.FirstID {
panic("expect ordered items")
}
// compact 2 single ids into range
if r1.Count == 1 && r2.Count == 1 {
merged := &Range{
FirstID: r1.FirstID,
Step: r2.FirstID - r1.FirstID,
Count: 2,
}
s.m.Delete(r2.FirstID)
s.setRange(merged)
return merged
}
// items without count have no step, so we assume its based on other item that has it
if r2.Count == 1 {
r2.Step = r1.Step
}
if r1.Count == 1 {
r1.Step = r2.Step
}
// if steps are same - 2 ranges that sit next to each other merged into a bigger range
if r1.Step == r2.Step {
if r1.LastID()+r1.Step != r2.FirstID {
return nil
}
s.m.Delete(r2.FirstID)
merged := &Range{
FirstID: r1.FirstID,
Step: r1.Step,
Count: r1.Count + r2.Count,
}
s.setRange(merged)
return merged
}
// steal item from smaller range
// first it helps to consolidate ranges
// second it avoids same id moving back and forth between 2 ranges
if r2.Count > r1.Count {
// steal item from left range
if r1.LastID() == r2.FirstID-r2.Step {
s.m.Delete(r2.FirstID)
newR2 := &Range{
FirstID: r2.FirstID - r2.Step,
Step: r2.Step,
Count: r2.Count + 1,
}
s.setRange(newR2)
merged := &Range{
FirstID: r1.FirstID,
Step: r1.Step,
Count: r1.Count - 1,
}
s.setRange(merged)
return merged
}
} else {
// steal item from right range
if r1.LastID()+r1.Step == r2.FirstID {
s.m.Delete(r2.FirstID)
newR2 := &Range{
FirstID: r2.FirstID + r2.Step,
Step: r2.Step,
Count: r2.Count - 1,
}
s.setRange(newR2)
merged := &Range{
FirstID: r1.FirstID,
Step: r1.Step,
Count: r1.Count + 1,
}
s.setRange(merged)
return merged
}
}
return nil
}
// Set adds new ID to set.
// If ID already exists - nothing is done, ensuring only unique values
func (s Set) Set(id int64) {
inserted := s.addID(id)
s.compactAdjacentRanges(inserted)
}
func (s Set) addID(id int64) *Range {
var prev *Range
s.m.Descend(id, func(key int64, df seq) bool {
if prev == nil {
prev = &Range{
FirstID: key,
Step: df.Step,
Count: df.Count,
}
return true
}
return false
})
if prev != nil {
if prev.ContainsID(id) { // already exists
return nil
}
if id > prev.FirstID && id < prev.LastID() { // cut sequence in half
cutAfterIndex := (id - prev.FirstID) / prev.Step
newPrevItems := cutAfterIndex + 1
newPrev := &Range{
FirstID: prev.FirstID,
Step: prev.Step,
Count: newPrevItems,
}
s.setRange(newPrev)
newNext := &Range{
FirstID: newPrev.LastID() + prev.Step,
Step: prev.Step,
Count: prev.Count - newPrevItems,
}
s.setRange(newNext)
r := &Range{
FirstID: id,
Step: defaultStep,
Count: 1,
}
s.setRange(r)
return r
}
}
r := &Range{
FirstID: id,
Step: defaultStep,
Count: 1,
}
// no overlap with existing ranges - create new range with single item
s.m.Set(r.FirstID, seq{
Step: r.Step,
Count: r.Count,
})
return r
}
// Delete ID from the set
// returns true if item was found and deleted
func (s Set) Delete(id int64) bool {
var prev *Range
s.m.Descend(id, func(key int64, df seq) bool {
if prev == nil {
prev = &Range{
FirstID: key,
Step: df.Step,
Count: df.Count,
}
return true
}
return false
})
if prev == nil {
return false
}
if !prev.ContainsID(id) {
return false
}
if prev.Count == 1 {
s.m.Delete(id)
return true
}
if id == prev.FirstID {
s.m.Delete(prev.FirstID)
newPrev := &Range{
FirstID: prev.FirstID + prev.Step,
Step: prev.Step,
Count: prev.Count - 1,
}
s.setRange(newPrev)
return true
}
if id == prev.LastID() {
newPrev := &Range{
FirstID: prev.FirstID,
Step: prev.Step,
Count: prev.Count - 1,
}
s.setRange(newPrev)
return true
}
if id > prev.FirstID && id < prev.LastID() { // cut sequence in half
cutAfterIndex := (id - prev.FirstID) / prev.Step
newPrev := &Range{
FirstID: prev.FirstID,
Step: prev.Step,
Count: cutAfterIndex,
}
s.setRange(newPrev)
newNext := &Range{
FirstID: newPrev.LastID() + prev.Step + prev.Step,
Step: prev.Step,
Count: prev.Count - cutAfterIndex - 1,
}
s.setRange(newNext)
return true
}
return false
}
// Ranges returns all underlying ranges in the set in ascending order
func (s Set) Ranges() []Range {
rr := []Range{}
s.m.Ascend(0, func(key int64, value seq) bool {
rr = append(rr, Range{
FirstID: key,
Step: value.Step,
Count: value.Count,
})
return true
})
return rr
}
// IterAll iterates all IDs in the set in ascending order
func (s Set) IterAll(f func(id int64) bool) {
s.m.Ascend(0, func(key int64, value seq) bool {
for i := int64(0); i < value.Count; i++ {
cont := f(key + i*value.Step)
if !cont {
return cont
}
}
return true
})
}
// IterAll iterates IDs in ascending order in specified range [from,to]
func (s Set) IterFromTo(from, to int64, f func(id int64) bool) {
s.m.Ascend(from, func(key int64, value seq) bool {
for i := int64(0); i < value.Count; i++ {
v := key + i*value.Step
if v > to {
return false
}
cont := f(v)
if !cont {
return cont
}
}
return true
})
}
// DeleteFromTo deletes IDs in specified range, inclusive [from,to]
func (s Set) DeleteFromTo(from, to int64) {
rr := []Range{}
// get all affected ranges
s.m.Descend(to, func(key int64, value seq) bool {
r := Range{
FirstID: key,
Step: value.Step,
Count: value.Count,
}
if r.LastID() < from {
return false
}
rr = append(rr, r)
return true
})
if len(rr) == 0 { // no ranges before "to"
return
}
for _, r := range rr {
// delete whole range (applicable for all ranges in range [1:len(rr)-1]
// -------< range >---------
// from-----------------------------to
if from <= r.FirstID && to >= r.LastID() {
s.m.Delete(r.FirstID)
continue
}
// no intersection
// -------------------<range>---------
// from--------to
// OR
// ----<range>---------
// -------------from--------to
if from < r.FirstID && to < r.FirstID {
continue
}
if from > r.LastID() && to > r.LastID() {
continue
}
fromIndex := (from - r.FirstID) / r.Step
fromRemainder := (from - r.FirstID) % r.Step
toIndex := (to - r.FirstID) / r.Step
keepLeftCount := fromIndex + 1
if fromRemainder == 0 {
keepLeftCount--
}
keepRightCount := r.Count - toIndex - 1
if from > r.FirstID && to < r.LastID() {
if keepLeftCount+keepRightCount == r.Count {
// ---< 1 100 200 >---------
// from---to
// keep left and right part - deleted range lies between steps
continue
}
}
// -------< range >---------
// from-------------...
// < kept >
if keepLeftCount > 0 { // keep left
newPrev := &Range{
FirstID: r.FirstID,
Step: r.Step,
Count: keepLeftCount,
}
s.setRange(newPrev)
} else {
s.m.Delete(r.FirstID)
}
// -------< range >---------
// ...------------to
// < kept >
if keepRightCount > 0 { // keep right
newPrev := &Range{
FirstID: r.LastID() - r.Step*(keepRightCount-1),
Step: r.Step,
Count: keepRightCount,
}
s.setRange(newPrev)
}
}
}