Skip to content

Performance issues with large data sets #268

Open
@mwilliamson-healx

Description

@mwilliamson-healx

For our use case, we send a few thousand objects to the client. We're currently using a normal JSON API, but are considering using GraphQL instead. However, when returning a few thousand objects, the overhead of resolving values makes it impractical to use. For instance, the example below returns 10000 objects with an ID field, and that takes around ten seconds to run.

Is there a recommended way to improve the performance? The approach I've used successfully so far is to use the existing parser to parse the query, and then generate the response by creating dictionaries directly, which avoids the overhead of resolving/completing on every single value.

import graphene

class UserQuery(graphene.ObjectType):
    id = graphene.Int()

class Query(graphene.ObjectType):
    users = graphene.Field(UserQuery.List())

    def resolve_users(self, args, info):
        return users

class User(object):
    def __init__(self, id):
        self.id = id

users = [User(index) for index in range(0, 10000)]

schema = graphene.Schema(query=Query)

print(schema.execute('{ users { id } }').data)

Metadata

Metadata

Assignees

No one assigned

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions