Skip to content

mha.py array shapes #262

Open
Open
@erlebach

Description

@erlebach

I wonder why array shapes in aha are (C, B, D) rather than (B, C, D). I thought it was convention that the batch was the first dimension. Specially, here are the first few lines of the forward method of class MultiHeadAttention:

    def forward(self, *,
                query: torch.Tensor,
                key: torch.Tensor,
                value: torch.Tensor,
                mask: Optional[torch.Tensor] = None):
        """
        `query`, `key` and `value` are the tensors that store
        collection of *query*, *key* and *value* vectors.
        They have shape `[seq_len, batch_size, d_model]`.      <<<<<<<<

        `mask` has shape `[seq_len, seq_len, batch_size]` and
        `mask[i, j, b]` indicates whether for batch `b`,
        query at position `i` has access to key-value at position `j`.
        """

Thanks.

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions