|
| 1 | +// RUN: mlir-opt %s -split-input-file -test-bit-width-constrained-vector-linearize=target-vector-bitwidth=128 | FileCheck %s --check-prefixes=ALL,BW-128 |
| 2 | +// RUN: mlir-opt %s -split-input-file -test-bit-width-constrained-vector-linearize=target-vector-bitwidth=0 | FileCheck %s --check-prefixes=ALL,BW-0 |
| 3 | + |
| 4 | +// A vector<2x2xf32> has inner-most dimension with 64-bits. Check that at |
| 5 | +// bitwidth threshold 128 (>= 64), operations are linearized, and at |
| 6 | +// bitwidth threshold 0 (< 64), operations are not linearized. |
| 7 | + |
| 8 | +// ALL-LABEL: test_result_bitwidth_64 |
| 9 | +func.func @test_result_bitwidth_64(%arg0: vector<2x2xf32>) -> vector<2x2xf32> { |
| 10 | + |
| 11 | + // BW-128: arith.constant {{.*}} vector<4xf32> |
| 12 | + // BW-0: arith.constant {{.*}} vector<2x2xf32> |
| 13 | + %0 = arith.constant dense<[[1.0, 2.0], [3.0, 4.0]]> : vector<2x2xf32> |
| 14 | + |
| 15 | + // BW-128: math.sin {{.*}} vector<4xf32> |
| 16 | + // BW-0: math.sin {{.*}} vector<2x2xf32> |
| 17 | + %1 = math.sin %arg0 : vector<2x2xf32> |
| 18 | + |
| 19 | + return %0 : vector<2x2xf32> |
| 20 | +} |
| 21 | + |
| 22 | +// ----- |
| 23 | + |
| 24 | +// The size of the 'index' type is backend specific, so we cannot guarantee that |
| 25 | +// the inner-most dimension below (of size 2*nbBits(index)) is below any bitwidth |
| 26 | +// threshold. Test that operations with vectors of index type are not linearized. |
| 27 | + |
| 28 | +// ALL-LABEL: test_index_no_linearize |
| 29 | +func.func @test_index_no_linearize(%arg0: vector<2x2xindex>, %arg1: vector<2x2xindex>) -> vector<2x2xindex> { |
| 30 | + |
| 31 | + // BW-128: %[[ADD:.*]] = arith.addi {{.*}} : vector<2x2xindex> |
| 32 | + // BW-0: %[[ADD:.*]] = arith.addi {{.*}} : vector<2x2xindex> |
| 33 | + %0 = arith.addi %arg0, %arg1 : vector<2x2xindex> |
| 34 | + return %0 : vector<2x2xindex> |
| 35 | +} |
| 36 | + |
| 37 | +// ----- |
| 38 | + |
| 39 | +// The logic for the insert op with regards to the bitwidth threshold is |
| 40 | +// different to the other ops, so we test it here. Specifically, the logic |
| 41 | +// is based on the bitwidth of the value to store. |
| 42 | + |
| 43 | +// ALL-LABEL: test_vector_insert |
| 44 | +// ALL-SAME: (%[[DEST:.*]]: vector<2x8x4xf32>, %[[SRC:.*]]: vector<8x4xf32>) -> vector<2x8x4xf32> { |
| 45 | +func.func @test_vector_insert(%arg0: vector<2x8x4xf32>, %arg1: vector<8x4xf32>) -> vector<2x8x4xf32> { |
| 46 | + |
| 47 | + // BW-128-DAG: %[[ARG_SRC:.*]] = vector.shape_cast %[[SRC]] : vector<8x4xf32> to vector<32xf32> |
| 48 | + // BW-128-DAG: %[[ARG_DEST:.*]] = vector.shape_cast %[[DEST]] : vector<2x8x4xf32> to vector<64xf32> |
| 49 | + // BW-128: %[[SHUFFLE:.*]] = vector.shuffle %[[ARG_DEST]], %[[ARG_SRC]] |
| 50 | + // BW-128: %[[RES:.*]] = vector.shape_cast %[[SHUFFLE]] : vector<64xf32> to vector<2x8x4xf32> |
| 51 | + // BW-128: return %[[RES]] : vector<2x8x4xf32> |
| 52 | + |
| 53 | + // BW-0: %[[RES:.*]] = vector.insert %[[SRC]], %[[DEST]] [0] : vector<8x4xf32> into vector<2x8x4xf32> |
| 54 | + // BW-0: return %[[RES]] : vector<2x8x4xf32> |
| 55 | + |
| 56 | + %0 = vector.insert %arg1, %arg0[0]: vector<8x4xf32> into vector<2x8x4xf32> |
| 57 | + return %0 : vector<2x8x4xf32> |
| 58 | +} |
0 commit comments