-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathnlp_aug.py
329 lines (252 loc) · 9.61 KB
/
nlp_aug.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
import random
from random import shuffle
random.seed(1)
#stop words list
stop_words = ['i', 'me', 'my', 'myself', 'we', 'our',
'ours', 'ourselves', 'you', 'your', 'yours',
'yourself', 'yourselves', 'he', 'him', 'his',
'himself', 'she', 'her', 'hers', 'herself',
'it', 'its', 'itself', 'they', 'them', 'their',
'theirs', 'themselves', 'what', 'which', 'who',
'whom', 'this', 'that', 'these', 'those', 'am',
'is', 'are', 'was', 'were', 'be', 'been', 'being',
'have', 'has', 'had', 'having', 'do', 'does', 'did',
'doing', 'a', 'an', 'the', 'and', 'but', 'if', 'or',
'because', 'as', 'until', 'while', 'of', 'at',
'by', 'for', 'with', 'about', 'against', 'between',
'into', 'through', 'during', 'before', 'after',
'above', 'below', 'to', 'from', 'up', 'down', 'in',
'out', 'on', 'off', 'over', 'under', 'again',
'further', 'then', 'once', 'here', 'there', 'when',
'where', 'why', 'how', 'all', 'any', 'both', 'each',
'few', 'more', 'most', 'other', 'some', 'such', 'no',
'nor', 'not', 'only', 'own', 'same', 'so', 'than', 'too',
'very', 's', 't', 'can', 'will', 'just', 'don',
'should', 'now', '']
#cleaning up text
import re
def get_only_chars(line):
clean_line = ""
line = line.replace("’", "")
line = line.replace("'", "")
line = line.replace("-", " ") #replace hyphens with spaces
line = line.replace("\t", " ")
line = line.replace("\n", " ")
line = line.lower()
for char in line:
if char in 'qwertyuiopasdfghjklzxcvbnm ':
clean_line += char
else:
clean_line += ' '
clean_line = re.sub(' +',' ',clean_line) #delete extra spaces
try:
if clean_line[0] == ' ':
clean_line = clean_line[1:]
except:
print("FIND ERROR",line)
return clean_line
########################################################################
# Synonym replacement
# Replace n words in the sentence with synonyms from wordnet
########################################################################
#for the first time you use wordnet
#import nltk
#nltk.download('wordnet')
from nltk.corpus import wordnet
def synonym_replacement(words, n):
new_words = words.copy()
random_word_list = list(set([word for word in words if word not in stop_words]))
random.shuffle(random_word_list)
num_replaced = 0
for random_word in random_word_list:
synonyms = get_synonyms(random_word)
if len(synonyms) >= 1:
synonym = random.choice(list(synonyms))
new_words = [synonym if word == random_word else word for word in new_words]
#print("replaced", random_word, "with", synonym)
num_replaced += 1
if num_replaced >= n: #only replace up to n words
break
#this is stupid but we need it, trust me
sentence = ' '.join(new_words)
new_words = sentence.split(' ')
return new_words
def get_synonyms(word):
synonyms = set()
for syn in wordnet.synsets(word):
for l in syn.lemmas():
synonym = l.name().replace("_", " ").replace("-", " ").lower()
synonym = "".join([char for char in synonym if char in ' qwertyuiopasdfghjklzxcvbnm'])
synonyms.add(synonym)
if word in synonyms:
synonyms.remove(word)
return list(synonyms)
########################################################################
# Random deletion
# Randomly delete words from the sentence with probability p
########################################################################
def random_deletion(words, p):
#obviously, if there's only one word, don't delete it
if len(words) == 1:
return words
#randomly delete words with probability p
new_words = []
for word in words:
r = random.uniform(0, 1)
if r > p:
new_words.append(word)
#if you end up deleting all words, just return a random word
if len(new_words) == 0:
rand_int = random.randint(0, len(words)-1)
return [words[rand_int]]
return new_words
########################################################################
# Random swap
# Randomly swap two words in the sentence n times
########################################################################
def random_swap(words, n):
new_words = words.copy()
for _ in range(n):
new_words = swap_word(new_words)
return new_words
def swap_word(new_words):
random_idx_1 = random.randint(0, len(new_words)-1)
random_idx_2 = random_idx_1
counter = 0
while random_idx_2 == random_idx_1:
random_idx_2 = random.randint(0, len(new_words)-1)
counter += 1
if counter > 3:
return new_words
new_words[random_idx_1], new_words[random_idx_2] = new_words[random_idx_2], new_words[random_idx_1]
return new_words
########################################################################
# Random addition
# Randomly add n words into the sentence
########################################################################
def random_addition(words, n):
new_words = words.copy()
for _ in range(n):
add_word(new_words)
return new_words
def add_word(new_words):
synonyms = []
counter = 0
while len(synonyms) < 1:
random_word = new_words[random.randint(0, len(new_words)-1)]
synonyms = get_synonyms(random_word)
counter += 1
if counter >= 10:
return
random_synonym = synonyms[0]
random_idx = random.randint(0, len(new_words)-1)
new_words.insert(random_idx, random_synonym)
########################################################################
# main data augmentation function
########################################################################
def eda_4(sentence, alpha_sr=0.3, alpha_ri=0.2, alpha_rs=0.1, p_rd=0.15, num_aug=9):
sentence = get_only_chars(sentence)
words = sentence.split(' ')
words = [word for word in words if word is not '']
num_words = len(words)
augmented_sentences = []
num_new_per_technique = 10
n_sr = max(1, int(alpha_sr*num_words))
n_ri = max(1, int(alpha_ri*num_words))
n_rs = max(1, int(alpha_rs*num_words))
#sr
for _ in range(num_new_per_technique):
a_words = synonym_replacement(words, n_sr)
augmented_sentences.append(' '.join(a_words))
#ri
for _ in range(num_new_per_technique):
a_words = random_addition(words, n_ri)
augmented_sentences.append(' '.join(a_words))
#rs
for _ in range(num_new_per_technique):
a_words = random_swap(words, n_rs)
augmented_sentences.append(' '.join(a_words))
#rd
for _ in range(num_new_per_technique):
a_words = random_deletion(words, p_rd)
augmented_sentences.append(' '.join(a_words))
augmented_sentences = [get_only_chars(sentence) for sentence in augmented_sentences]
shuffle(augmented_sentences)
#trim so that we have the desired number of augmented sentences
# if num_aug >= 1:
# augmented_sentences = augmented_sentences[:num_aug]
# else:
# keep_prob = num_aug / len(augmented_sentences)
# augmented_sentences = [s for s in augmented_sentences if random.uniform(0, 1) < keep_prob]
# append the original sentence
augmented_sentences.append(sentence)
return augmented_sentences[:num_aug]
def SR(sentence, alpha_sr, n_aug=9):
sentence = get_only_chars(sentence)
words = sentence.split(' ')
num_words = len(words)
augmented_sentences = []
n_sr = max(1, int(alpha_sr*num_words))
for _ in range(n_aug):
a_words = synonym_replacement(words, n_sr)
augmented_sentences.append(' '.join(a_words))
augmented_sentences = [get_only_chars(sentence) for sentence in augmented_sentences]
shuffle(augmented_sentences)
augmented_sentences.append(sentence)
return augmented_sentences
def RI(sentence, alpha_ri, n_aug=9):
sentence = get_only_chars(sentence)
words = sentence.split(' ')
num_words = len(words)
augmented_sentences = []
n_ri = max(1, int(alpha_ri*num_words))
for _ in range(n_aug):
a_words = random_addition(words, n_ri)
augmented_sentences.append(' '.join(a_words))
augmented_sentences = [get_only_chars(sentence) for sentence in augmented_sentences]
shuffle(augmented_sentences)
augmented_sentences.append(sentence)
return augmented_sentences
def RS(sentence, alpha_rs, n_aug=9):
sentence = get_only_chars(sentence)
words = sentence.split(' ')
num_words = len(words)
augmented_sentences = []
n_rs = max(1, int(alpha_rs*num_words))
for _ in range(n_aug):
a_words = random_swap(words, n_rs)
augmented_sentences.append(' '.join(a_words))
augmented_sentences = [get_only_chars(sentence) for sentence in augmented_sentences]
shuffle(augmented_sentences)
augmented_sentences.append(sentence)
return augmented_sentences
def RD(sentence, alpha_rd, n_aug=9):
sentence = get_only_chars(sentence)
words = sentence.split(' ')
words = [word for word in words if word is not '']
num_words = len(words)
augmented_sentences = []
for _ in range(n_aug):
a_words = random_deletion(words, alpha_rd)
augmented_sentences.append(' '.join(a_words))
augmented_sentences = [get_only_chars(sentence) for sentence in augmented_sentences]
shuffle(augmented_sentences)
augmented_sentences.append(sentence)
return augmented_sentences
# 带方差相似度的EDA
########################################################################
# Testing
########################################################################
if __name__ == '__main__':
line = 'Hi. My name is Jason. I’m a third-year computer science major at Dartmouth College, interested in deep learning and computer vision. My advisor is Saeed Hassanpour. I’m currently working on deep learning for lung cancer classification.'
########################################################################
# Sliding window
# Slide a window of size w over the sentence with stride s
# Returns a list of lists of words
########################################################################
# def sliding_window_sentences(words, w, s):
# windows = []
# for i in range(0, len(words)-w+1, s):
# window = words[i:i+w]
# windows.append(window)
# return windows