Skip to content

Commit 61cd424

Browse files
committed
Revise comments
1 parent 7c53c99 commit 61cd424

23 files changed

+36
-36
lines changed

apply_noise_gauss.m

+1-1
Original file line numberDiff line numberDiff line change
@@ -13,7 +13,7 @@
1313
% as isotropic, STDEV * eye(M,M). Similarly, 1xM standard deviation, STDEV,
1414
% is interpreted as diagonal, diag(STDEV).
1515
%
16-
% Examples:
16+
% Example:
1717
% in = zeros(100, 2);
1818
% out = apply_noise_gauss(in, 3)
1919
% out = apply_noise_gauss(in, [1, 2])

error_orientation.m

+1-1
Original file line numberDiff line numberDiff line change
@@ -13,7 +13,7 @@
1313
% of an object is described by x-axis in its local coordinate, error between
1414
% two orientation comes from angular difference of two x axes.
1515
%
16-
% Examples:
16+
% Example:
1717
% rad = error_orientation([0, 0, 0], [0, 0, pi])
1818

1919
v_p = tran_rad2rot(p) * [1; 0; 0];

error_position.m

+1-1
Original file line numberDiff line numberDiff line change
@@ -8,7 +8,7 @@
88
%
99
% Note: Two vectors, P and Q, should be same size.
1010
%
11-
% Examples:
11+
% Example:
1212
% p = [82; 3; 29];
1313
% q = [84; 10; 18];
1414
% d = error_position(p, q)

localize2d_betke97.m

+2-2
Original file line numberDiff line numberDiff line change
@@ -15,12 +15,12 @@
1515
% element of POSE. Since this algorithm estimates 2D position and orientation,
1616
% the expected VALID is [true, true, false, false, false, true].
1717
%
18-
% References:
18+
% Reference:
1919
% [1] M. Betke and L. Gurvits, Mobile Robot Localization using Landmarks,
2020
% IEEE Transactions on Robotics and Automation, Vol. 13, No. 2, 1997
2121
% URL: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=563647
2222
%
23-
% Examples:
23+
% Example:
2424
% N = 3;
2525
% map = [10 * rand(N,2), zeros(N,4)]; % Random 2D landmark map
2626
% data = [2 * pi * rand(N,1) - pi, zeros(N,1)]; % Random measurement

localize2d_sayed05.m

+2-2
Original file line numberDiff line numberDiff line change
@@ -14,12 +14,12 @@
1414
% element of POSE. Since this algorithm estimates 2D position, the expected
1515
% VALID is [true, true, false, false, false, false].
1616
%
17-
% References:
17+
% Reference:
1818
% [1] A. H. Sayed et al., Network-based Wireless Location,
1919
% IEEE Signal Processing Magazine, Vol. 24, No. 4, 2005
2020
% URL: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1458275
2121
%
22-
% Examples:
22+
% Example:
2323
% N = 3;
2424
% map = [10 * rand(N,2), zeros(N,4)]; % Random 2D landmark map
2525
% data = 10 * rand(N,1); % Random measurement

localize2d_se05.m

+2-2
Original file line numberDiff line numberDiff line change
@@ -18,12 +18,12 @@
1818
% Note: This implementation is extended from Se et al. [1], so it can take into account
1919
% more than two measurements in lease-squares sense.
2020
%
21-
% References:
21+
% Reference:
2222
% [1] S. Se et al., Vision-Based Global Localization and Mapping for Mobile Robots,
2323
% IEEE Transactions on Robotics, Vol. 21, No. 3, 2005
2424
% URL: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1435480
2525
%
26-
% Examples:
26+
% Example:
2727
% N = 2;
2828
% map = [10 * rand(N,2), zeros(N,4)]; % Random 2D landmark map
2929
% data = [10 * rand(N,2), zeros(N,1)]; % Random measurement

localize2d_shimshoni02_algebraic.m

+2-2
Original file line numberDiff line numberDiff line change
@@ -18,12 +18,12 @@
1818
% Note: This implementation is based on Shimshoni's basic algebraic approach [1]
1919
% without the proposed improvement.
2020
%
21-
% References:
21+
% Reference:
2222
% [1] I. Shimshoni, On Mobile Robot Localization from Landmark Bearings,
2323
% IEEE Transactions on Robotics and Automation, Vol. 18, No. 6, 2002
2424
% URL: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1159015
2525
%
26-
% Examples:
26+
% Example:
2727
% N = 3;
2828
% map = [10 * rand(N,2), zeros(N,4)]; % Random 2D landmark map
2929
% data = [2 * pi * rand(N,1) - pi, zeros(N,1)]; % Random measurement

localize2d_shimshoni02_improved.m

+2-2
Original file line numberDiff line numberDiff line change
@@ -18,12 +18,12 @@
1818
% Note: This implementation is based on Shimshoni's algebraic approach with the first
1919
% and second improvements, bounded variance and scale data.
2020
%
21-
% References:
21+
% Reference:
2222
% [1] I. Shimshoni, On Mobile Robot Localization from Landmark Bearings,
2323
% IEEE Transactions on Robotics and Automation, Vol. 18, No. 6, 2002
2424
% URL: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1159015
2525
%
26-
% Examples:
26+
% Example:
2727
% N = 3;
2828
% map = [10 * rand(N,2), zeros(N,4)]; % Random 2D landmark map
2929
% data = [2 * pi * rand(N,1) - pi, zeros(N,1)]; % Random measurement

localize3d_sayed05.m

+2-2
Original file line numberDiff line numberDiff line change
@@ -14,12 +14,12 @@
1414
% element of POSE. Since this algorithm estimates 3D position, the expected
1515
% VALID is [true, true, true, false, false, false].
1616
%
17-
% References:
17+
% Reference:
1818
% [1] A. H. Sayed et al., Network-based Wireless Location,
1919
% IEEE Signal Processing Magazine, Vol. 24, No. 4, 2005
2020
% URL: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1458275
2121
%
22-
% Examples:
22+
% Example:
2323
% N = 4;
2424
% map = [10 * rand(N,3), zeros(N,3)]; % Random 2D landmark map
2525
% data = 10 * rand(N,1); % Random measurement

localize3d_thomas05.m

+4-4
Original file line numberDiff line numberDiff line change
@@ -19,15 +19,15 @@
1919
% exactly three, this algorithm may return two sets of POSE and VALID due to ambiguity.
2020
% If N is more than three, this algorithm uses 4-th measurement to resolve ambiguity.
2121
%
22-
% Note: This implementation is slightly modified from Thomas's original code once available at
23-
% his homepage, http://www-iri.upc.es/people/~thomas.
22+
% Note: This implementation is slightly modified from Thomas's original code available at
23+
% his homepage, http://www.iri.upc.edu/people/thomas/.
2424
%
25-
% References:
25+
% Reference:
2626
% [1] F. Thomas and L. Ros, Revisiting Trilateration for Robot Localization,
2727
% IEEE Transactions on Robotics, Vol. 21, No. 1, 2005
2828
% URL: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1391018
2929
%
30-
% Examples:
30+
% Example:
3131
% N = 4;
3232
% map = [10 * rand(N,3), zeros(N,3)]; % Random 2D landmark map
3333
% data = 10 * rand(N,1); % Random measurement

observe_bearing.m

+1-1
Original file line numberDiff line numberDiff line change
@@ -5,7 +5,7 @@
55
% (matrix) MAP : A landmark map (Nx6 matrix)
66
% (matrix) POSE : Pose of the target object (1x6 matrix)
77
% (scalar) VISIBLE_RATE: Visible probability of landmarks (default: 1)
8-
% (matrix) OBS_DATA : The measured displacement from POSE to landmarks (Mx2 matrix)
8+
% (matrix) OBS_DATA : The measured bearing from POSE to landmarks (Mx2 matrix)
99
% (matrix) OBS_MAP : The landmark map of measured landmarks (Mx6 matrix)
1010
%
1111
% Note: Pose of an object, POSE, is represented by 1x6 vector whose first three

observe_displacement.m

+1-1
Original file line numberDiff line numberDiff line change
@@ -24,7 +24,7 @@
2424
% Note: The measured displacement, OBS_DATA, is represented by Mx3 matrix whose i-th row
2525
% is relative position of i-th landmark in OBS_MAP with respect to the given pose, POSE.
2626
%
27-
% Examples:
27+
% Example:
2828
% map = [ 0, 0, 5, 0, 0, 0; ...
2929
% 5, 0, 5, 0, 0, 0; ...
3030
% 5, 5, 5, 0, 0, 0 ];

observe_distance.m

+1-1
Original file line numberDiff line numberDiff line change
@@ -21,7 +21,7 @@
2121
% If there is no visible landmark, OBS_DATA and OBS_MAP will be an empty matrix.
2222
% Please use the command, ISEMPTY, to identify an empty matrix.
2323
%
24-
% Examples:
24+
% Example:
2525
% map = [ 0, 0, 5, 0, 0, 0; ...
2626
% 5, 0, 5, 0, 0, 0; ...
2727
% 5, 5, 5, 0, 0, 0 ];

observe_pose.m

+1-1
Original file line numberDiff line numberDiff line change
@@ -24,7 +24,7 @@
2424
% Note: The measured relative pose, OBS_DATA, is represented by Mx6 matrix whose
2525
% format is exactly same with POSE and MAP.
2626
%
27-
% Examples:
27+
% Example:
2828
% map = [ 0, 0, 5, 0, 0, 0; ...
2929
% 5, 0, 5, 0, 0, 0; ...
3030
% 5, 5, 5, 0, 0, 0 ];

run_eval_roh.m

+3-3
Original file line numberDiff line numberDiff line change
@@ -29,7 +29,7 @@
2929
4.5, 3.0, 0, 0, 0, pi/2; ...
3030
4.5, 4.5, 0, 0, 0, pi/2; ...
3131
];
32-
config.algorithm = ... % Description of localization algorithms
32+
config.algorithm = ... % Description of localization algorithms
3333
{ ...
3434
% #, Dim, Name, Local. Function, Observation Function, Min. N, Valid, Line Sytle; ...
3535
1, 2, 'Betke97', @localize2d_betke97, @observe_bearing, 3, [1 1 0 0 0 1], 'gd-'; ...
@@ -42,7 +42,7 @@
4242
'Computing Time [msec]', 'Number of Failures'}; % Name of evaluation criteria
4343
criteria.repr = {@median, @median, @median, @sum}; % Functions for calculating representive values
4444
% (e.g. mean, median, std, and sum)
45-
criteria.format = {'%.6f', '%.3f', '%.6f', '%d'}; % Format for printing text
45+
criteria.format = {'%.6f', '%.3f', '%.6f', '%d'}; % Format for printing text
4646

4747
% Perform experiments %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4848
config.algoDims = 2;
@@ -87,4 +87,4 @@
8787
% 4. Save experimental results
8888
save(config.matFile, 'config', 'criteria', 'record');
8989

90-
% To visualize the result, please use the script, 'run_anal_record', with 'target.ex = 1' and 'target.v = 1'.
90+
% To visualize the result, please use the script, 'run_draw_distribution', with 'target.ex = 1' and 'target.v = 1'.

save_figure.m

+1-1
Original file line numberDiff line numberDiff line change
@@ -9,7 +9,7 @@ function save_figure(h, filename)
99
% file format. (e.g. 'output.jpg') Please refer to the command, SAVEAS, to
1010
% check the available file formats.
1111
%
12-
% Examples:
12+
% Example:
1313
% save_figure(gcf, 'output.pdf')
1414
% save_figure(gcf, 'output.png');
1515
%

test_is_near.m

+1-1
Original file line numberDiff line numberDiff line change
@@ -10,7 +10,7 @@
1010
%
1111
% Note: Two values, A and B, should be same size.
1212
%
13-
% Examples:
13+
% Example:
1414
% t = test_is_near(4.17, 4.19, 0.1)
1515
% t = test_is_near(pi, pi + eps)
1616
% t = test_is_near([3, 29], [3 + eps, 29 - eps])

test_is_true.m

+1-1
Original file line numberDiff line numberDiff line change
@@ -6,7 +6,7 @@
66
% (scalar) VERBOSE: A flag to print its result (default: true)
77
% (scalar) RESULT : The test result
88
%
9-
% Examples:
9+
% Example:
1010
% t = test_is_true(82 < 84, false)
1111
% t = test_is_true([10, 18] == [10, 18])
1212
% t = test_is_true(isequal([1, 2; 3, 4], [5, 6]))

tran_deg2rad.m

+1-1
Original file line numberDiff line numberDiff line change
@@ -5,7 +5,7 @@
55
% (matrix) DEGREE: The given angle [deg]
66
% (matrix) RADIAN: The transformed angle [rad]
77
%
8-
% Examples:
8+
% Example:
99
% t = tran_deg2rad(30)
1010
% t = tran_deg2rad(60)
1111
%

tran_rad2deg.m

+1-1
Original file line numberDiff line numberDiff line change
@@ -5,7 +5,7 @@
55
% (matrix) RADIAN: The given angle [rad]
66
% (matrix) DEGREE: The transformed angle [deg]
77
%
8-
% Examples:
8+
% Example:
99
% t = tran_rad2deg(pi / 6)
1010
% t = tran_rad2deg(pi / 3)
1111
%

tran_rad2rot.m

+2-2
Original file line numberDiff line numberDiff line change
@@ -8,12 +8,12 @@
88
% Note: Orientation, RADIAN, is represented by 1x3 matrix whose elements are
99
% rotation angle with respect to x, y, and z axes, respectively.
1010
%
11-
% References:
11+
% Reference:
1212
% [1] S.M. LaValle, Planning Algorithm, Cambridge, 2006,
1313
% URL: http://planning.cs.uiuc.edu/node102.html
1414
% URL: http://planning.cs.uiuc.edu/node103.html
1515
%
16-
% Examples:
16+
% Example:
1717
% R = tran_rad2rot([pi/3, pi/4, pi/6])
1818
%
1919
% See also tran_rot2rad.

tran_rot2rad.m

+2-2
Original file line numberDiff line numberDiff line change
@@ -10,12 +10,12 @@
1010
%
1111
% Note: R(1,1) and R(3,3) should not be zero due to singularity.
1212
%
13-
% References:
13+
% Reference:
1414
% [1] S.M. LaValle, Planning Algorithm, Cambridge, 2006,
1515
% URL: http://planning.cs.uiuc.edu/node102.html
1616
% URL: http://planning.cs.uiuc.edu/node103.html
1717
%
18-
% Examples:
18+
% Example:
1919
% R = tran_rad2rot([pi/6, pi/6, pi/6]);
2020
% angle = tran_rot2rad(R)
2121
%

trim_rad.m

+1-1
Original file line numberDiff line numberDiff line change
@@ -5,7 +5,7 @@
55
% (matrix) IN : The given angle [rad]
66
% (matrix) OUT: The trimmed angle [rad]
77
%
8-
% Examples:
8+
% Example:
99
% t = trim_rad(2 * pi)
1010
% t = trim_rad(0 : pi/6 : 4*pi)
1111

0 commit comments

Comments
 (0)