Open
Description
I am running resnet50 benchmark using cm with a docker container, and it failed after all download and compiling were done, and just started benchmarking,
Below are my logs, what does the return code 35072 really mean?
Checking compiler version ...
Ubuntu clang version 18.1.3 (1ubuntu1)
Target: aarch64-unknown-linux-gnu
Thread model: posix
InstalledDir: /usr/bin
Compiling source files ...
main.cpp
/usr/bin/clang++ -c -std=c++14 -DCM_MODEL_RESNET50 -DCM_MLPERF_BACKEND_ONNXRUNTIME -DCM_MLPERF_DEVICE_CPU -O2 -O4 -I/root/CM/repos/local/cache/fd62bf2638f24cd3/install/include -I/root/CM/repos/local/cache/490298ae3cb5442a/install/onnxruntime-linux-aarch64-1.16.3/include -I/root/CM/repos/mlcommons@cm4mlops/script/app-mlperf-inference-mlcommons-cpp/inc main.cpp -o main.o
clang++: warning: -O4 is equivalent to -O3 [-Wdeprecated]
Linking ...
/usr/bin/clang++ -std=c++14 -DCM_MODEL_RESNET50 -DCM_MLPERF_BACKEND_ONNXRUNTIME -DCM_MLPERF_DEVICE_CPU -O2 -O4 main.o -o /root/CM/repos/local/cache/97b15df295c847d1/run.out -L/root/CM/repos/local/cache/fd62bf2638f24cd3/install/lib -L/root/CM/repos/local/cache/490298ae3cb5442a/install/onnxruntime-linux-aarch64-1.16.3/lib -lmlperf_loadgen -lpthread -lonnxruntime -O2 -O4
INFO:root: ! call "postprocess" from /root/CM/repos/mlcommons@cm4mlops/script/compile-program/customize.py
INFO:root: * cm run script "benchmark-mlperf"
INFO:root: ! call "postprocess" from /root/CM/repos/mlcommons@cm4mlops/script/benchmark-program-mlperf/customize.py
INFO:root: * cm run script "benchmark-program program"
INFO:root: * cm run script "detect cpu"
INFO:root: * cm run script "detect os"
INFO:root: ! cd /root/CM/repos/local/cache/97b15df295c847d1
INFO:root: ! call /root/CM/repos/mlcommons@cm4mlops/script/detect-os/run.sh from tmp-run.sh
INFO:root: ! call "postprocess" from /root/CM/repos/mlcommons@cm4mlops/script/detect-os/customize.py
INFO:root: ! cd /root/CM/repos/local/cache/97b15df295c847d1
INFO:root: ! call /root/CM/repos/mlcommons@cm4mlops/script/detect-cpu/run.sh from tmp-run.sh
INFO:root: ! call "postprocess" from /root/CM/repos/mlcommons@cm4mlops/script/detect-cpu/customize.py
INFO:root: ! cd /root/CM/repos/local/cache/97b15df295c847d1
INFO:root: ! call /root/CM/repos/mlcommons@cm4mlops/script/benchmark-program/run-ubuntu.sh from tmp-run.sh
/root/CM/repos/local/cache/97b15df295c847d1/run.out 2>&1 | tee '/root/CM/repos/local/cache/b97ae9541a004ef7/valid_results/d5ef47345c85-cpp-cpu-onnxruntime-vdefault-default_config/resnet50/singlestream/performance/run_1/console.out'; echo ${PIPESTATUS[0]} > exitstatus
MLPerf Conf path: /root/CM/repos/local/cache/9633a0068b684365/inference/mlperf.conf
User Conf path: /root/CM/repos/mlcommons@cm4mlops/script/generate-mlperf-inference-user-conf/tmp/7c318ebe49344c7a8e292a59b7fc8756.conf
Dataset Preprocessed path: /root/CM/repos/local/cache/b43f1c701cc2419c
Dataset List filepath:
Scenario: SingleStream
Mode: PerformanceOnly
Batch size: 1
Query count override: 0
Performance sample count override in application: 0
loaded imagenet with 500 samples
starting benchmark
loading samples to ram with total sample size: 500
Config file missing for given hw_name: 'd5ef47345c85', implementation: 'cpp', device: 'cpu, backend: 'onnxruntime', copying from default
Using MLCommons Inference source from '/root/CM/repos/local/cache/9633a0068b684365/inference'
Original configuration value 0.1 target_latency
Adjusted configuration value 0.04000000000000001 target_latency
Output Dir: '/root/CM/repos/local/cache/b97ae9541a004ef7/valid_results/d5ef47345c85-cpp-cpu-onnxruntime-vdefault-default_config/resnet50/singlestream/performance/run_1'
resnet50.SingleStream.target_latency = 0.04000000000000001
resnet50.SingleStream.max_duration = 660000
***************************************************************************
CM script::benchmark-program/run.sh
Run Directory: /root/CM/repos/local/cache/97b15df295c847d1
CMD: /root/CM/repos/local/cache/97b15df295c847d1/run.out 2>&1 | tee '/root/CM/repos/local/cache/b97ae9541a004ef7/valid_results/d5ef47345c85-cpp-cpu-onnxruntime-vdefault-default_config/resnet50/singlestream/performance/run_1/console.out'; echo \${PIPESTATUS[0]} > exitstatus
{
"return": 2,
"error": "Portable CM script failed (name = benchmark-program, return code = 35072)\n\n\n^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\nNote that it is often a portability issue of a third-party tool or a native script\nwrapped and unified by this CM script (automation recipe). Please re-run\nthis script with --repro flag and report this issue with the original\ncommand line, cm-repro directory and full log here:\n\nhttps://github.com/mlcommons/cm4mlops/issues\n\nThe CM concept is to collaboratively fix such issues inside portable CM scripts\nto make existing tools and native scripts more portable, interoperable\nand deterministic. Thank you",
"system_info": {
"platform": "Linux-6.8.9-yocto-tiny-aarch64-with-glibc2.39",
"architecture": "aarch64",
"hostname": "d5ef47345c85",
"CPU": "aarch64",
"CPU_FREQ": null,
"memory": "4 GB"
}
}
Portable CM script failed (name = benchmark-program, return code = 35072)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Note that it is often a portability issue of a third-party tool or a native script
wrapped and unified by this CM script (automation recipe). Please re-run
this script with --repro flag and report this issue with the original
command line, cm-repro directory and full log here:
https://github.com/mlcommons/cm4mlops/issues
The CM concept is to collaboratively fix such issues inside portable CM scripts
to make existing tools and native scripts more portable, interoperable
and deterministic. Thank you
Metadata
Metadata
Assignees
Labels
Type
Projects
Status
No status