|
| 1 | +/*************************************************** |
| 2 | + Arduino library for the MPS MagAlpha magnetic angle sensor |
| 3 | + ----> http://www.monolithicpower.com/Products/Position-Sensors/Products-Overview |
| 4 | + Written by Mathieu Kaelin for Monolithic Power Systems. |
| 5 | + MIT license, all text above must be included in any redistribution |
| 6 | + ****************************************************/ |
| 7 | + |
| 8 | +#include "MagAlphaBase.h" |
| 9 | + |
| 10 | +MagAlphaBase::MagAlphaBase(){ |
| 11 | +} |
| 12 | + |
| 13 | +double MagAlphaBase::readAngle(){ |
| 14 | + return readAngleRaw16()*(360.0/65536.0); |
| 15 | +} |
| 16 | + |
| 17 | +uint16_t MagAlphaBase::readAngleRaw(){ |
| 18 | + return readAngleRaw16(); |
| 19 | +} |
| 20 | + |
| 21 | +void MagAlphaBase::getPartNumber(char *partNumber){ |
| 22 | + sprintf(partNumber, "Unknown Part Number"); |
| 23 | +} |
| 24 | + |
| 25 | +double MagAlphaBase::convertRawAngleToDegree(uint8_t rawAngleDataBitLength, uint16_t rawAngle){ |
| 26 | + double angleInDegree; |
| 27 | + angleInDegree = (rawAngle*360.0)/((double)pow(2, rawAngleDataBitLength)); |
| 28 | + return angleInDegree; |
| 29 | +} |
| 30 | + |
| 31 | +int16_t MagAlphaBase::twosComplement(uint16_t value, uint8_t numberOfBits){ |
| 32 | + int16_t signedValue = static_cast<int16_t>(value); |
| 33 | + if ((value & (1 << (numberOfBits - 1))) != 0){ |
| 34 | + signedValue = value - (1 << numberOfBits); |
| 35 | + } |
| 36 | + return signedValue; |
| 37 | +} |
| 38 | + |
| 39 | +uint16_t MagAlphaBase::twosComplementInverse(int16_t value, uint8_t numberOfBits){ |
| 40 | + uint16_t unsignedValue = static_cast<uint16_t>(value); |
| 41 | + if (value < 0){ |
| 42 | + unsignedValue = value + (1 << numberOfBits); |
| 43 | + } |
| 44 | + return unsignedValue; |
| 45 | +} |
| 46 | + |
| 47 | +/*====================================================================================*/ |
| 48 | +/*============================== MagAlphaSPI =========================================*/ |
| 49 | +/*====================================================================================*/ |
| 50 | +MagAlphaSPI::MagAlphaSPI(){ |
| 51 | +} |
| 52 | + |
| 53 | +void MagAlphaSPI::begin(int spiChipSelectPin, SPIClass *spi){ |
| 54 | + begin(10000000, (MagAlphaSPIMode)SPI_MODE3, spiChipSelectPin, spi); |
| 55 | +} |
| 56 | + |
| 57 | +void MagAlphaSPI::begin(int32_t spiSclkFrequency, MagAlphaSPIMode spiMode, uint8_t spiChipSelectPin, SPIClass *spi){ |
| 58 | + _spi = spi; |
| 59 | + _clockFrequency = spiSclkFrequency; |
| 60 | + _spiMode = (uint8_t)spiMode; |
| 61 | + setSpiChipSelectPin(spiChipSelectPin); |
| 62 | + _spi->begin(); |
| 63 | + _spi->beginTransaction(SPISettings(_clockFrequency, MSBFIRST, _spiMode)); |
| 64 | +} |
| 65 | + |
| 66 | +void MagAlphaSPI::end(){ |
| 67 | + _spi->endTransaction(); |
| 68 | + _spi->end(); |
| 69 | +} |
| 70 | + |
| 71 | +void MagAlphaSPI::setSpiClockFrequency(uint32_t clockFrequency){ |
| 72 | + _clockFrequency = clockFrequency; |
| 73 | + _spi->endTransaction(); |
| 74 | + _spi->beginTransaction(SPISettings(_clockFrequency, MSBFIRST, _spiMode)); |
| 75 | +} |
| 76 | + |
| 77 | +void MagAlphaSPI::setSpiDataMode(MagAlphaSPIMode spiMode){ |
| 78 | + _spiMode = (uint8_t)spiMode; |
| 79 | + _spi->endTransaction(); |
| 80 | + _spi->beginTransaction(SPISettings(_clockFrequency, MSBFIRST, _spiMode)); |
| 81 | +} |
| 82 | + |
| 83 | +void MagAlphaSPI::setSpiChipSelectPin(uint8_t spiChipSelectPin){ |
| 84 | + _spiChipSelectPin = spiChipSelectPin; |
| 85 | + pinMode(_spiChipSelectPin, OUTPUT); |
| 86 | + digitalWrite(_spiChipSelectPin, HIGH); |
| 87 | +} |
| 88 | + |
| 89 | +uint16_t MagAlphaSPI::readAngleRaw16Quick(){ |
| 90 | + uint16_t angle; |
| 91 | + digitalWrite(_spiChipSelectPin, LOW); |
| 92 | + // angle = _spi->transfer16(0x0000); //Read 16-bit angle |
| 93 | + spi0_hw->dr = 0x0000; |
| 94 | + angle = spi0_hw->dr; |
| 95 | + digitalWrite(_spiChipSelectPin, HIGH); |
| 96 | + return angle; |
| 97 | +} |
| 98 | + |
| 99 | +/*====================================================================================*/ |
| 100 | +/*============================== MagAlphaSSI =========================================*/ |
| 101 | +/*====================================================================================*/ |
| 102 | +MagAlphaSSI::MagAlphaSSI(){ |
| 103 | +} |
| 104 | + |
| 105 | +void MagAlphaSSI::begin(SPIClass *ssi){ |
| 106 | + begin(1000000, MagAlphaSSIMode::MODE_A, ssi); |
| 107 | +} |
| 108 | + |
| 109 | +void MagAlphaSSI::begin(int32_t ssiSsckFrequency, SPIClass *ssi){ |
| 110 | + begin(ssiSsckFrequency, MagAlphaSSIMode::MODE_A, ssi); |
| 111 | +} |
| 112 | + |
| 113 | +void MagAlphaSSI::begin(int32_t ssiSsckFrequency, MagAlphaSSIMode ssiMode, SPIClass *ssi){ |
| 114 | + _ssi = ssi; |
| 115 | + _clockFrequency = ssiSsckFrequency; |
| 116 | + _ssiMode = (uint8_t)ssiMode; |
| 117 | + _ssi->begin(); |
| 118 | + _ssi->beginTransaction(SPISettings(_clockFrequency, MSBFIRST, _ssiMode)); |
| 119 | +} |
| 120 | + |
| 121 | +void MagAlphaSSI::end(){ |
| 122 | + _ssi->endTransaction(); |
| 123 | + _ssi->end(); |
| 124 | +} |
| 125 | + |
| 126 | +void MagAlphaSSI::setSsiClockFrequency(uint32_t clockFrequency){ |
| 127 | + _clockFrequency = clockFrequency; |
| 128 | + _ssi->endTransaction(); |
| 129 | + _ssi->beginTransaction(SPISettings(_clockFrequency, MSBFIRST, _ssiMode)); |
| 130 | +} |
| 131 | + |
| 132 | +void MagAlphaSSI::setSSiMode(MagAlphaSSIMode ssiMode){ |
| 133 | + _ssiMode = (uint8_t)ssiMode; |
| 134 | + _ssi->endTransaction(); |
| 135 | + _ssi->beginTransaction(SPISettings(_clockFrequency, MSBFIRST, _ssiMode)); |
| 136 | +} |
| 137 | + |
| 138 | +double MagAlphaSSI::readAngle(){ |
| 139 | + uint16_t angle; |
| 140 | + double angleInDegree; |
| 141 | + angle = readAngleRaw16(); |
| 142 | + angleInDegree = (angle*360.0)/65536.0; |
| 143 | + return angleInDegree; |
| 144 | +} |
| 145 | + |
| 146 | +uint16_t MagAlphaSSI::readAngleRaw(){ |
| 147 | + return readAngleRaw16(); |
| 148 | +} |
| 149 | + |
| 150 | +uint16_t MagAlphaSSI::readAngleRaw(bool* error){ |
| 151 | + uint16_t data1; |
| 152 | + uint8_t data2; |
| 153 | + uint8_t highStateCount = 0; |
| 154 | + data1 = _ssi->transfer16(0); |
| 155 | + data2 = _ssi->transfer(0); |
| 156 | + data1 = (data1 << 1); |
| 157 | + data1 = data1 + (data2 >> 7); |
| 158 | + data2 = ((data2 & 0x40) >> 6); |
| 159 | + //Count the number of 1 in the angle binary value |
| 160 | + for (int i=0;i<16;++i){ |
| 161 | + if (data1 & (1 << i)){ |
| 162 | + highStateCount++; |
| 163 | + } |
| 164 | + } |
| 165 | + //check if parity bit is correct |
| 166 | + if ((highStateCount % 2) == 0){ |
| 167 | + if (data2 == 0){ |
| 168 | + *error = false; |
| 169 | + } |
| 170 | + else{ |
| 171 | + *error = true; |
| 172 | + } |
| 173 | + } |
| 174 | + else{ |
| 175 | + if (data2 == 1){ |
| 176 | + *error = false; |
| 177 | + } |
| 178 | + else{ |
| 179 | + *error = true; |
| 180 | + } |
| 181 | + } |
| 182 | + return data1; |
| 183 | +} |
| 184 | + |
| 185 | +uint16_t MagAlphaSSI::readAngleRaw16(){ |
| 186 | + uint16_t data1; |
| 187 | + uint8_t data2; |
| 188 | + data1 = _ssi->transfer16(0); |
| 189 | + data2 = _ssi->transfer(0); |
| 190 | + data1 = (data1 << 1); |
| 191 | + return data1 + (data2 >> 7); |
| 192 | +} |
| 193 | + |
| 194 | +uint8_t MagAlphaSSI::readAngleRaw8(){ |
| 195 | + uint16_t data; |
| 196 | + data = _ssi->transfer16(0); |
| 197 | + return (data & 0x7F80) >> 7; |
| 198 | +} |
| 199 | + |
| 200 | + |
| 201 | +/*====================================================================================*/ |
| 202 | +/*============================== MagAlphaI2C =========================================*/ |
| 203 | +/*====================================================================================*/ |
| 204 | +MagAlphaI2C::MagAlphaI2C(){ |
| 205 | +} |
| 206 | + |
| 207 | +void MagAlphaI2C::begin(uint8_t deviceAddress, uint32_t clockFrequency, TwoWire *i2c){ |
| 208 | + _i2c = i2c; |
| 209 | + _deviceAddress = deviceAddress; |
| 210 | + _i2c->begin(); |
| 211 | + setClockFrequency(clockFrequency); |
| 212 | +} |
| 213 | + |
| 214 | +void MagAlphaI2C::end(){ |
| 215 | + _i2c->end(); |
| 216 | +} |
| 217 | + |
| 218 | +void MagAlphaI2C::setClockFrequency(uint32_t clockFrequency){ |
| 219 | + _clockFrequency=clockFrequency; |
| 220 | + _i2c->setClock(_clockFrequency); |
| 221 | + //100000 = Standard-mode (Sm) |
| 222 | + //400000 = Fast-mode (Fm) |
| 223 | + //1000000 = Fast-mode Plus (Fm) |
| 224 | + //3400000 = High-Speed mode (Hs-mode) |
| 225 | + //5000000 = Ulta Fast-mode (UFm) !!! Unidirectional Bus ONLY |
| 226 | + //10000 = low speed mode => not supported by the MKRZERO apparently |
| 227 | +} |
| 228 | + |
| 229 | +void MagAlphaI2C::setDeviceAddress(uint8_t deviceAddress){ |
| 230 | + _deviceAddress = deviceAddress; |
| 231 | +} |
| 232 | + |
| 233 | +uint8_t MagAlphaI2C::findDeviceAddress(){ |
| 234 | + for(int i=0; i<128; i++){ |
| 235 | + _i2c->beginTransmission(i); |
| 236 | + if (_i2c->endTransmission() == 0){ |
| 237 | + setDeviceAddress(i); |
| 238 | + return i; |
| 239 | + } |
| 240 | + } |
| 241 | + return 255; |
| 242 | +} |
| 243 | + |
| 244 | +uint8_t MagAlphaI2C::findAllDeviceAddresses(uint8_t detectedDeviceAddresses[], uint8_t arraySize){ |
| 245 | + uint8_t numberOfDeviceDetected = 0; |
| 246 | + for(int i=0; i<128; i++){ |
| 247 | + _i2c->beginTransmission(i); |
| 248 | + if (_i2c->endTransmission() == 0){ |
| 249 | + if (numberOfDeviceDetected < arraySize){ |
| 250 | + detectedDeviceAddresses[numberOfDeviceDetected] = i; |
| 251 | + } |
| 252 | + numberOfDeviceDetected++; |
| 253 | + } |
| 254 | + } |
| 255 | + if (numberOfDeviceDetected == 1){ |
| 256 | + setDeviceAddress(detectedDeviceAddresses[0]); |
| 257 | + } |
| 258 | + return numberOfDeviceDetected; |
| 259 | +} |
0 commit comments