-
Notifications
You must be signed in to change notification settings - Fork 80
/
Copy pathtest_openai_llm.py
408 lines (344 loc) · 14.8 KB
/
test_openai_llm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
# Copyright (c) "Neo4j"
# Neo4j Sweden AB [https://neo4j.com]
# #
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# #
# https://www.apache.org/licenses/LICENSE-2.0
# #
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from unittest.mock import MagicMock, Mock, patch
import openai
import pytest
from neo4j_graphrag.exceptions import LLMGenerationError
from neo4j_graphrag.llm import LLMResponse
from neo4j_graphrag.llm.openai_llm import AzureOpenAILLM, OpenAILLM
from neo4j_graphrag.llm.types import ToolCallResponse
from neo4j_graphrag.tool import Tool
def get_mock_openai() -> MagicMock:
mock = MagicMock()
mock.OpenAIError = openai.OpenAIError
return mock
@patch("builtins.__import__", side_effect=ImportError)
def test_openai_llm_missing_dependency(mock_import: Mock) -> None:
with pytest.raises(ImportError):
OpenAILLM(model_name="gpt-4o")
@patch("builtins.__import__")
def test_openai_llm_happy_path(mock_import: Mock) -> None:
mock_openai = get_mock_openai()
mock_import.return_value = mock_openai
mock_openai.OpenAI.return_value.chat.completions.create.return_value = MagicMock(
choices=[MagicMock(message=MagicMock(content="openai chat response"))],
)
llm = OpenAILLM(api_key="my key", model_name="gpt")
res = llm.invoke("my text")
assert isinstance(res, LLMResponse)
assert res.content == "openai chat response"
@patch("builtins.__import__")
def test_openai_llm_with_message_history_happy_path(mock_import: Mock) -> None:
mock_openai = get_mock_openai()
mock_import.return_value = mock_openai
mock_openai.OpenAI.return_value.chat.completions.create.return_value = MagicMock(
choices=[MagicMock(message=MagicMock(content="openai chat response"))],
)
llm = OpenAILLM(api_key="my key", model_name="gpt")
message_history = [
{"role": "user", "content": "When does the sun come up in the summer?"},
{"role": "assistant", "content": "Usually around 6am."},
]
question = "What about next season?"
res = llm.invoke(question, message_history) # type: ignore
assert isinstance(res, LLMResponse)
assert res.content == "openai chat response"
message_history.append({"role": "user", "content": question})
# Use assert_called_once() instead of assert_called_once_with() to avoid issues with overloaded functions
llm.client.chat.completions.create.assert_called_once() # type: ignore
# Check call arguments individually
call_args = llm.client.chat.completions.create.call_args[ # type: ignore
1
] # Get the keyword arguments
assert call_args["messages"] == message_history
assert call_args["model"] == "gpt"
@patch("builtins.__import__")
def test_openai_llm_with_message_history_and_system_instruction(
mock_import: Mock,
) -> None:
mock_openai = get_mock_openai()
mock_import.return_value = mock_openai
mock_openai.OpenAI.return_value.chat.completions.create.return_value = MagicMock(
choices=[MagicMock(message=MagicMock(content="openai chat response"))],
)
system_instruction = "You are a helpful assistent."
llm = OpenAILLM(
api_key="my key",
model_name="gpt",
)
message_history = [
{"role": "user", "content": "When does the sun come up in the summer?"},
{"role": "assistant", "content": "Usually around 6am."},
]
question = "What about next season?"
res = llm.invoke(question, message_history, system_instruction=system_instruction) # type: ignore
assert isinstance(res, LLMResponse)
assert res.content == "openai chat response"
messages = [{"role": "system", "content": system_instruction}]
messages.extend(message_history)
messages.append({"role": "user", "content": question})
# Use assert_called_once() instead of assert_called_once_with() to avoid issues with overloaded functions
llm.client.chat.completions.create.assert_called_once() # type: ignore
# Check call arguments individually
call_args = llm.client.chat.completions.create.call_args[ # type: ignore
1
] # Get the keyword arguments
assert call_args["messages"] == messages
assert call_args["model"] == "gpt"
assert llm.client.chat.completions.create.call_count == 1 # type: ignore
@patch("builtins.__import__")
def test_openai_llm_with_message_history_validation_error(mock_import: Mock) -> None:
mock_openai = get_mock_openai()
mock_import.return_value = mock_openai
mock_openai.OpenAI.return_value.chat.completions.create.return_value = MagicMock(
choices=[MagicMock(message=MagicMock(content="openai chat response"))],
)
llm = OpenAILLM(api_key="my key", model_name="gpt")
message_history = [
{"role": "human", "content": "When does the sun come up in the summer?"},
{"role": "assistant", "content": "Usually around 6am."},
]
question = "What about next season?"
with pytest.raises(LLMGenerationError) as exc_info:
llm.invoke(question, message_history) # type: ignore
assert "Input should be 'user', 'assistant' or 'system'" in str(exc_info.value)
@patch("builtins.__import__")
@patch("json.loads")
def test_openai_llm_invoke_with_tools_happy_path(
mock_json_loads: Mock,
mock_import: Mock,
test_tool: Tool,
) -> None:
# Set up json.loads to return a dictionary
mock_json_loads.return_value = {"param1": "value1"}
mock_openai = get_mock_openai()
mock_import.return_value = mock_openai
# Mock the tool call response
mock_function = MagicMock()
mock_function.name = "test_tool"
mock_function.arguments = '{"param1": "value1"}'
mock_tool_call = MagicMock()
mock_tool_call.function = mock_function
mock_openai.OpenAI.return_value.chat.completions.create.return_value = MagicMock(
choices=[
MagicMock(
message=MagicMock(
content="openai tool response", tool_calls=[mock_tool_call]
)
)
],
)
llm = OpenAILLM(api_key="my key", model_name="gpt")
tools = [test_tool]
res = llm.invoke_with_tools("my text", tools)
assert isinstance(res, ToolCallResponse)
assert len(res.tool_calls) == 1
assert res.tool_calls[0].name == "test_tool"
assert res.tool_calls[0].arguments == {"param1": "value1"}
assert res.content == "openai tool response"
@patch("builtins.__import__")
@patch("json.loads")
def test_openai_llm_invoke_with_tools_with_message_history(
mock_json_loads: Mock,
mock_import: Mock,
test_tool: Tool,
) -> None:
# Set up json.loads to return a dictionary
mock_json_loads.return_value = {"param1": "value1"}
mock_openai = get_mock_openai()
mock_import.return_value = mock_openai
# Mock the tool call response
mock_function = MagicMock()
mock_function.name = "test_tool"
mock_function.arguments = '{"param1": "value1"}'
mock_tool_call = MagicMock()
mock_tool_call.function = mock_function
mock_openai.OpenAI.return_value.chat.completions.create.return_value = MagicMock(
choices=[
MagicMock(
message=MagicMock(
content="openai tool response", tool_calls=[mock_tool_call]
)
)
],
)
llm = OpenAILLM(api_key="my key", model_name="gpt")
tools = [test_tool]
message_history = [
{"role": "user", "content": "When does the sun come up in the summer?"},
{"role": "assistant", "content": "Usually around 6am."},
]
question = "What about next season?"
res = llm.invoke_with_tools(question, tools, message_history) # type: ignore
assert isinstance(res, ToolCallResponse)
assert len(res.tool_calls) == 1
assert res.tool_calls[0].name == "test_tool"
assert res.tool_calls[0].arguments == {"param1": "value1"}
# Verify the correct messages were passed
message_history.append({"role": "user", "content": question})
# Use assert_called_once() instead of assert_called_once_with() to avoid issues with overloaded functions
llm.client.chat.completions.create.assert_called_once() # type: ignore
# Check call arguments individually
call_args = llm.client.chat.completions.create.call_args[ # type: ignore
1
] # Get the keyword arguments
assert call_args["messages"] == message_history
assert call_args["model"] == "gpt"
# Check tools content rather than direct equality
assert len(call_args["tools"]) == 1
assert call_args["tools"][0]["type"] == "function"
assert call_args["tools"][0]["function"]["name"] == "test_tool"
assert call_args["tools"][0]["function"]["description"] == "A test tool"
assert call_args["tool_choice"] == "auto"
assert call_args["temperature"] == 0.0
@patch("builtins.__import__")
@patch("json.loads")
def test_openai_llm_invoke_with_tools_with_system_instruction(
mock_json_loads: Mock,
mock_import: Mock,
test_tool: Mock,
) -> None:
# Set up json.loads to return a dictionary
mock_json_loads.return_value = {"param1": "value1"}
mock_openai = get_mock_openai()
mock_import.return_value = mock_openai
# Mock the tool call response
mock_function = MagicMock()
mock_function.name = "test_tool"
mock_function.arguments = '{"param1": "value1"}'
mock_tool_call = MagicMock()
mock_tool_call.function = mock_function
mock_openai.OpenAI.return_value.chat.completions.create.return_value = MagicMock(
choices=[
MagicMock(
message=MagicMock(
content="openai tool response", tool_calls=[mock_tool_call]
)
)
],
)
llm = OpenAILLM(api_key="my key", model_name="gpt")
tools = [test_tool]
system_instruction = "You are a helpful assistant."
res = llm.invoke_with_tools("my text", tools, system_instruction=system_instruction)
assert isinstance(res, ToolCallResponse)
# Verify system instruction was included
messages = [{"role": "system", "content": system_instruction}]
messages.append({"role": "user", "content": "my text"})
# Use assert_called_once() instead of assert_called_once_with() to avoid issues with overloaded functions
llm.client.chat.completions.create.assert_called_once() # type: ignore
# Check call arguments individually
call_args = llm.client.chat.completions.create.call_args[ # type: ignore
1
] # Get the keyword arguments
assert call_args["messages"] == messages
assert call_args["model"] == "gpt"
# Check tools content rather than direct equality
assert len(call_args["tools"]) == 1
assert call_args["tools"][0]["type"] == "function"
assert call_args["tools"][0]["function"]["name"] == "test_tool"
assert call_args["tools"][0]["function"]["description"] == "A test tool"
assert call_args["tool_choice"] == "auto"
assert call_args["temperature"] == 0.0
@patch("builtins.__import__")
def test_openai_llm_invoke_with_tools_error(mock_import: Mock, test_tool: Tool) -> None:
mock_openai = get_mock_openai()
mock_import.return_value = mock_openai
# Mock an OpenAI error
mock_openai.OpenAI.return_value.chat.completions.create.side_effect = (
openai.OpenAIError("Test error")
)
llm = OpenAILLM(api_key="my key", model_name="gpt")
tools = [test_tool]
with pytest.raises(LLMGenerationError):
llm.invoke_with_tools("my text", tools)
@patch("builtins.__import__", side_effect=ImportError)
def test_azure_openai_llm_missing_dependency(mock_import: Mock) -> None:
with pytest.raises(ImportError):
AzureOpenAILLM(model_name="gpt-4o")
@patch("builtins.__import__")
def test_azure_openai_llm_happy_path(mock_import: Mock) -> None:
mock_openai = get_mock_openai()
mock_import.return_value = mock_openai
mock_openai.AzureOpenAI.return_value.chat.completions.create.return_value = (
MagicMock(
choices=[MagicMock(message=MagicMock(content="openai chat response"))],
)
)
llm = AzureOpenAILLM(
model_name="gpt",
azure_endpoint="https://test.openai.azure.com/",
api_key="my key",
api_version="version",
)
res = llm.invoke("my text")
assert isinstance(res, LLMResponse)
assert res.content == "openai chat response"
@patch("builtins.__import__")
def test_azure_openai_llm_with_message_history_happy_path(mock_import: Mock) -> None:
mock_openai = get_mock_openai()
mock_import.return_value = mock_openai
mock_openai.AzureOpenAI.return_value.chat.completions.create.return_value = (
MagicMock(
choices=[MagicMock(message=MagicMock(content="openai chat response"))],
)
)
llm = AzureOpenAILLM(
model_name="gpt",
azure_endpoint="https://test.openai.azure.com/",
api_key="my key",
api_version="version",
)
message_history = [
{"role": "user", "content": "When does the sun come up in the summer?"},
{"role": "assistant", "content": "Usually around 6am."},
]
question = "What about next season?"
res = llm.invoke(question, message_history) # type: ignore
assert isinstance(res, LLMResponse)
assert res.content == "openai chat response"
message_history.append({"role": "user", "content": question})
# Use assert_called_once() instead of assert_called_once_with() to avoid issues with overloaded functions
llm.client.chat.completions.create.assert_called_once() # type: ignore
# Check call arguments individually
call_args = llm.client.chat.completions.create.call_args[ # type: ignore
1
] # Get the keyword arguments
assert call_args["messages"] == message_history
assert call_args["model"] == "gpt"
@patch("builtins.__import__")
def test_azure_openai_llm_with_message_history_validation_error(
mock_import: Mock,
) -> None:
mock_openai = get_mock_openai()
mock_import.return_value = mock_openai
mock_openai.AzureOpenAI.return_value.chat.completions.create.return_value = (
MagicMock(
choices=[MagicMock(message=MagicMock(content="openai chat response"))],
)
)
llm = AzureOpenAILLM(
model_name="gpt",
azure_endpoint="https://test.openai.azure.com/",
api_key="my key",
api_version="version",
)
message_history = [
{"role": "user", "content": 33},
]
question = "What about next season?"
with pytest.raises(LLMGenerationError) as exc_info:
llm.invoke(question, message_history) # type: ignore
assert "Input should be a valid string" in str(exc_info.value)