|
13 | 13 | # limitations under the License.
|
14 | 14 | from __future__ import annotations
|
15 | 15 |
|
16 |
| -from typing import Any, List, Optional, Union, cast |
| 16 | +from typing import Any, List, Optional, Union, cast, Sequence |
17 | 17 |
|
18 | 18 | from pydantic import ValidationError
|
19 | 19 |
|
20 | 20 | from neo4j_graphrag.exceptions import LLMGenerationError
|
21 | 21 | from neo4j_graphrag.llm.base import LLMInterface
|
22 |
| -from neo4j_graphrag.llm.types import BaseMessage, LLMResponse, MessageList |
| 22 | +from neo4j_graphrag.llm.types import ( |
| 23 | + BaseMessage, |
| 24 | + LLMResponse, |
| 25 | + MessageList, |
| 26 | + ToolCall, |
| 27 | + ToolCallResponse, |
| 28 | +) |
23 | 29 | from neo4j_graphrag.message_history import MessageHistory
|
| 30 | +from neo4j_graphrag.tool import Tool |
24 | 31 | from neo4j_graphrag.types import LLMMessage
|
25 | 32 |
|
26 | 33 | try:
|
27 | 34 | from vertexai.generative_models import (
|
28 | 35 | Content,
|
| 36 | + FunctionCall, |
| 37 | + FunctionDeclaration, |
| 38 | + GenerationResponse, |
29 | 39 | GenerativeModel,
|
30 | 40 | Part,
|
31 | 41 | ResponseValidationError,
|
| 42 | + Tool as VertexAITool, |
32 | 43 | )
|
33 | 44 | except ImportError:
|
34 | 45 | GenerativeModel = None
|
@@ -176,3 +187,108 @@ async def ainvoke(
|
176 | 187 | return LLMResponse(content=response.text)
|
177 | 188 | except ResponseValidationError as e:
|
178 | 189 | raise LLMGenerationError(e)
|
| 190 | + |
| 191 | + def _to_vertexai_tool(self, tool: Tool) -> VertexAITool: |
| 192 | + return VertexAITool( |
| 193 | + function_declarations=[ |
| 194 | + FunctionDeclaration( |
| 195 | + name=tool.get_name(), |
| 196 | + description=tool.get_description(), |
| 197 | + parameters=tool.get_parameters(exclude=["additional_properties"]), |
| 198 | + ) |
| 199 | + ] |
| 200 | + ) |
| 201 | + |
| 202 | + def _get_llm_tools( |
| 203 | + self, tools: Optional[Sequence[Tool]] |
| 204 | + ) -> Optional[list[VertexAITool]]: |
| 205 | + if not tools: |
| 206 | + return None |
| 207 | + return [self._to_vertexai_tool(tool) for tool in tools] |
| 208 | + |
| 209 | + def _get_model( |
| 210 | + self, |
| 211 | + system_instruction: Optional[str] = None, |
| 212 | + tools: Optional[Sequence[Tool]] = None, |
| 213 | + ) -> GenerativeModel: |
| 214 | + system_message = [system_instruction] if system_instruction is not None else [] |
| 215 | + vertex_ai_tools = self._get_llm_tools(tools) |
| 216 | + model = GenerativeModel( |
| 217 | + model_name=self.model_name, |
| 218 | + system_instruction=system_message, |
| 219 | + tools=vertex_ai_tools, |
| 220 | + **self.options, |
| 221 | + ) |
| 222 | + return model |
| 223 | + |
| 224 | + async def _acall_llm( |
| 225 | + self, |
| 226 | + input: str, |
| 227 | + message_history: Optional[Union[List[LLMMessage], MessageHistory]] = None, |
| 228 | + system_instruction: Optional[str] = None, |
| 229 | + tools: Optional[Sequence[Tool]] = None, |
| 230 | + ) -> GenerationResponse: |
| 231 | + model = self._get_model(system_instruction=system_instruction, tools=tools) |
| 232 | + messages = self.get_messages(input, message_history) |
| 233 | + response = await model.generate_content_async(messages, **self.model_params) |
| 234 | + return response |
| 235 | + |
| 236 | + def _call_llm( |
| 237 | + self, |
| 238 | + input: str, |
| 239 | + message_history: Optional[Union[List[LLMMessage], MessageHistory]] = None, |
| 240 | + system_instruction: Optional[str] = None, |
| 241 | + tools: Optional[Sequence[Tool]] = None, |
| 242 | + ) -> GenerationResponse: |
| 243 | + model = self._get_model(system_instruction=system_instruction, tools=tools) |
| 244 | + messages = self.get_messages(input, message_history) |
| 245 | + response = model.generate_content(messages, **self.model_params) |
| 246 | + return response |
| 247 | + |
| 248 | + def _to_tool_call(self, function_call: FunctionCall) -> ToolCall: |
| 249 | + return ToolCall( |
| 250 | + name=function_call.name, |
| 251 | + arguments=function_call.args, |
| 252 | + ) |
| 253 | + |
| 254 | + def _parse_tool_response(self, response: GenerationResponse) -> ToolCallResponse: |
| 255 | + function_calls = response.candidates[0].function_calls |
| 256 | + return ToolCallResponse( |
| 257 | + tool_calls=[self._to_tool_call(f) for f in function_calls], |
| 258 | + content=None, |
| 259 | + ) |
| 260 | + |
| 261 | + def _parse_content_response(self, response: GenerationResponse) -> LLMResponse: |
| 262 | + return LLMResponse( |
| 263 | + content=response.text, |
| 264 | + ) |
| 265 | + |
| 266 | + async def ainvoke_with_tools( |
| 267 | + self, |
| 268 | + input: str, |
| 269 | + tools: Sequence[Tool], |
| 270 | + message_history: Optional[Union[List[LLMMessage], MessageHistory]] = None, |
| 271 | + system_instruction: Optional[str] = None, |
| 272 | + ) -> ToolCallResponse: |
| 273 | + response = await self._acall_llm( |
| 274 | + input, |
| 275 | + message_history=message_history, |
| 276 | + system_instruction=system_instruction, |
| 277 | + tools=tools, |
| 278 | + ) |
| 279 | + return self._parse_tool_response(response) |
| 280 | + |
| 281 | + def invoke_with_tools( |
| 282 | + self, |
| 283 | + input: str, |
| 284 | + tools: Sequence[Tool], |
| 285 | + message_history: Optional[Union[List[LLMMessage], MessageHistory]] = None, |
| 286 | + system_instruction: Optional[str] = None, |
| 287 | + ) -> ToolCallResponse: |
| 288 | + response = self._call_llm( |
| 289 | + input, |
| 290 | + message_history=message_history, |
| 291 | + system_instruction=system_instruction, |
| 292 | + tools=tools, |
| 293 | + ) |
| 294 | + return self._parse_tool_response(response) |
0 commit comments