Skip to content

Commit cd032d8

Browse files
committed
Initial commit of rda.py experimental implementation v0.1. With images of output trial.
1 parent 4a8516e commit cd032d8

13 files changed

+420
-2
lines changed

.gitignore

+1
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,6 @@
11
# Byte-compiled / optimized / DLL files
22
__pycache__/
3+
*~
34
*.py[cod]
45
*$py.class
56

README.md

+36-2
Original file line numberDiff line numberDiff line change
@@ -1,2 +1,36 @@
1-
# RDA_in_Python
2-
This is the Receptor Density Algorithm (RDA) implemented in Python 2.7. RDA is an Artificial Immune System (AIS) anomaly detection algorithm modelled upon how T-cell receptors respond to antigen, originally modelled by Owens et al in 2009. This was part of a sub-project to investigate its applicability as an AIS anomaly classifier for our self-healing architecture.
1+
# RDA in Python
2+
3+
This is an implementation of the 'Receptor Density Algorithm' (RDA) Python 2.7. RDA is an Artificial Immune System (AIS) anomaly detection algorithm modelled upon how T-cell receptors respond to antigen, originally modelled by Owens et al in 2009 at University of York. This was part of a sub-project to investigate its applicability as an AIS anomaly classifier for our self-healing architecture.
4+
5+
6+
Details of the experimentation and implementation to be added. See /images/ directory for outputs of our trial run with k=10 cross fold validation on some sampled two-stage normal data.
7+
8+
9+
### Versions:
10+
11+
Version 0.1 implementation of RDA in python 2.7.
12+
13+
- Uses one numerical sensor input from a generated model.
14+
- Includes signature classification of 1 class.
15+
- Suitable for post-processing style classification. The anomaly matching approach is not suitable for real-time responding.
16+
- Requires python 2.7 and libraries: scipy, numpy, matplotlib
17+
18+
### Tested on: Python 2.7.5+ (default, Feb 27 2014, 19:37:08)
19+
20+
In [1]: import matplotlib
21+
In [2]: matplotlib.__version__
22+
Out[2]: '1.2.1'
23+
In [3]: import numpy
24+
In [4]: numpy.__version__
25+
Out[4]: '1.7.1'
26+
In [5]: import scipy
27+
In [6]: scipy.__version__
28+
Out[6]: '0.12.0'
29+
30+
31+
### References:
32+
33+
Hilder, J. A., Owens, N. D., Hickey, P. J., Cairns, S. N., Kilgour, D. P., Timmis, J., & Tyrrell, A. (2011). Parameter optimisation in the receptor density algorithm. In Artificial Immune Systems (pp. 226-239). Springer Berlin Heidelberg.
34+
35+
Owens, N. D., Greensted, A., Timmis, J., & Tyrrell, A. (2009). T cell receptor signalling inspired kernel density estimation and anomaly detection. In Artificial Immune Systems (pp. 122-135). Springer Berlin Heidelberg.
36+

images/result_plot_fold=0-of-10.png

105 KB
Loading

images/result_plot_fold=1-of-10.png

106 KB
Loading

images/result_plot_fold=2-of-10.png

104 KB
Loading

images/result_plot_fold=3-of-10.png

105 KB
Loading

images/result_plot_fold=4-of-10.png

103 KB
Loading

images/result_plot_fold=5-of-10.png

105 KB
Loading

images/result_plot_fold=6-of-10.png

106 KB
Loading

images/result_plot_fold=7-of-10.png

104 KB
Loading

images/result_plot_fold=8-of-10.png

105 KB
Loading

images/result_plot_fold=9-of-10.png

103 KB
Loading

0 commit comments

Comments
 (0)