You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: docs/index.md
+34-17
Original file line number
Diff line number
Diff line change
@@ -223,27 +223,44 @@ import cmath
223
223
from math import pi, sin, cos, sqrt
224
224
```
225
225
### Subproblems
226
-
**1.1 Write a Haldane model Hamiltonian on a hexagonal lattice, given the following parameters: wavevector components $$k_x$$ and $k_y$ (momentum) in the x and y directions, lattice spacing $a$, nearest-neighbor coupling constant $t_1$, next-nearest-neighbor coupling constant $t_2$, phase $\phi$ for the next-nearest-neighbor hopping, and the on-site energy $m$.**
226
+
**1.1 Write a Haldane model Hamiltonian on a hexagonal lattice, given the following parameters: wavevector components $k_x$ and $k_y$ (momentum) in the x and y directions, lattice spacing $a$, nearest-neighbor coupling constant $t_1$, next-nearest-neighbor coupling constant $t_2$, phase $\phi$ for the next-nearest-neighbor hopping, and the on-site energy $m$.**
227
227
228
228
**_Scientists Annotated Background:_**
229
229
Source: Haldane, F. D. M. (1988). Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the" parity anomaly". Physical review letters, 61(18).
230
-
231
-
We denote $\{\mathbf{a}_i\}$ are the vectors from a B site to its three nearest-neighbor A sites, and $\{\mathbf{b}_i\}$ are next-nearest-neighbor distance vectors, then we have
We denote $\{\mathbf{a}_i\}$ are the vectors from a B site to its three nearest-neighbor A sites, and $\{\mathbf{b}_i\}$ are next-nearest-neighbor distance vectors, then we have
0 commit comments