|
4 | 4 |
|
5 | 5 | mlinsights: extensions to scikit-learn
|
6 | 6 | ======================================
|
7 |
| - qqa |
8 |
| -.. image:: https://travis-ci.com/sdpython/mlinsights.svg?branch=main |
9 |
| - :target: https://app.travis-ci.com/github/sdpython/mlinsights/ |
10 |
| - :alt: Build status |
11 | 7 |
|
12 |
| -.. image:: https://ci.appveyor.com/api/projects/status/uj6tq445k3na7hs9?svg=true |
13 |
| - :target: https://ci.appveyor.com/project/sdpython/mlinsights |
14 |
| - :alt: Build Status Windows |
15 |
| - |
16 |
| -.. image:: https://circleci.com/gh/sdpython/mlinsights/tree/main.svg?style=svg |
17 |
| - :target: https://circleci.com/gh/sdpython/mlinsights/tree/main |
18 |
| - |
19 |
| -.. image:: https://dev.azure.com/xavierdupre3/mlinsights/_apis/build/status/sdpython.mlinsights%20(2) |
20 |
| - :target: https://dev.azure.com/xavierdupre3/mlinsights/ |
| 8 | +.. image:: https://dev.azure.com/xavierdupre3/mlinsights/_apis/build/status%2Fsdpython.mlinsights%20(2)?branchName=main |
| 9 | + :target: https://dev.azure.com/xavierdupre3/mlinsights/_build/latest?definitionId=16&branchName=main |
21 | 10 |
|
22 | 11 | .. image:: https://badge.fury.io/py/mlinsights.svg
|
23 | 12 | :target: http://badge.fury.io/py/mlinsights
|
@@ -51,21 +40,16 @@ mlinsights: extensions to scikit-learn
|
51 | 40 |
|
52 | 41 | *mlinsights* extends *scikit-learn* with a couple of new models,
|
53 | 42 | transformers, metrics, plotting. It provides new trainers such as
|
54 |
| -*QuantileLinearRegression* which trains a linear regression with *L1* norm |
| 43 | +**QuantileLinearRegression** which trains a linear regression with *L1* norm |
55 | 44 | non-linear correlation based on decision trees, or
|
56 |
| -*QuantileMLPRegressor* a modification of scikit-learn's MLPRegressor |
| 45 | +**QuantileMLPRegressor** a modification of scikit-learn's MLPRegressor |
57 | 46 | which trains a multi-layer perceptron with *L1* norm.
|
58 |
| -It also explores *PredictableTSNE* which trains a supervized |
59 |
| -model to replicate *t-SNE* results or a *PiecewiseRegression* |
| 47 | +It also explores **PredictableTSNE** which trains a supervized |
| 48 | +model to replicate *t-SNE* results or a **PiecewiseRegression** |
60 | 49 | which partitions the data before fitting a model on each bucket.
|
| 50 | +**PiecewiseTreeRegressor** trains a piecewise regressor using |
| 51 | +a linear regression on each piece. **IntervalRegressor** produces |
| 52 | +confidence interval by using bootstrapping. **ApproximateNMFPredictor** |
| 53 | +approximates a NMF to produce prediction without retraining. |
61 | 54 |
|
62 | 55 | `documentation <https://sdpython.github.io/doc/dev/mlinsights/>`_
|
63 |
| - |
64 |
| -Function ``pipeline2dot`` converts a pipeline into a graph: |
65 |
| - |
66 |
| -:: |
67 |
| - |
68 |
| - from mlinsights.plotting import pipeline2dot |
69 |
| - dot = pipeline2dot(clf, df) |
70 |
| - |
71 |
| -.. image:: https://raw.githubusercontent.com/sdpython/mlinsights/main/_doc/sphinxdoc/source/pipeline.png |
0 commit comments