-
-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathcpu.cpp
308 lines (278 loc) · 9.36 KB
/
cpu.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
//-----------------------------------------------------------------
// ExactStep IAISS
// V0.5
// github.com/ultraembedded/exactstep
// Copyright 2014-2019
// License: BSD 3-Clause
//-----------------------------------------------------------------
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <stdarg.h>
#include <assert.h>
#include "cpu.h"
//-----------------------------------------------------------------
// Constructor
//-----------------------------------------------------------------
cpu::cpu()
{
m_memories = NULL;
m_devices = NULL;
m_console = NULL;
m_has_breakpoints = false;
m_stopped = false;
m_fault = false;
m_break = false;
m_trace = 0;
m_syscall_if = NULL;
}
//-----------------------------------------------------------------
// error: Handle an error
//-----------------------------------------------------------------
bool cpu::error(bool is_fatal, const char *fmt, ...)
{
va_list args;
va_start(args, fmt);
vprintf(fmt, args);
va_end(args);
if (is_fatal)
exit(-1);
return true;
}
//-----------------------------------------------------------------
// create_memory: Create a memory region
//-----------------------------------------------------------------
bool cpu::create_memory(uint32_t baseAddr, uint32_t len, uint8_t *buf /*=NULL*/)
{
// Avoid adding duplicate memories
for (memory_base *mem = m_memories; mem != NULL; mem = mem->next)
if (mem->valid_addr(baseAddr) && mem->valid_addr(baseAddr + len -1))
return true;
return attach_memory(new memory("mem", baseAddr, len, buf));
}
//-----------------------------------------------------------------
// attach_memory: Attach a memory device to a particular region
//-----------------------------------------------------------------
bool cpu::attach_memory(memory_base *memory)
{
assert(memory->next == NULL);
memory->next = m_memories;
m_memories = memory;
memory->reset();
return true;
}
//-----------------------------------------------------------------
// attach_memory: Attach a memory device to a particular region
//-----------------------------------------------------------------
bool cpu::attach_device(device *dev)
{
// Devices are memory mapped
attach_memory(dev);
assert(dev->device_next == NULL);
dev->device_next = m_devices;
m_devices = dev;
dev->reset();
return true;
}
//-----------------------------------------------------------------
// get_break: Get breakpoint status (and clear)
//-----------------------------------------------------------------
bool cpu::get_break(void)
{
bool brk = m_break;
m_break = false;
return brk;
}
//-----------------------------------------------------------------
// set_breakpoint: Set breakpoint on a given PC
//-----------------------------------------------------------------
bool cpu::set_breakpoint(uint32_t pc)
{
m_breakpoints.push_back(pc);
m_has_breakpoints = true;
return true;
}
//-----------------------------------------------------------------
// set_breakpoint: Clear breakpoint on a given PC
//-----------------------------------------------------------------
bool cpu::clr_breakpoint(uint32_t pc)
{
for (std::vector<uint32_t>::iterator it = m_breakpoints.begin() ; it != m_breakpoints.end(); ++it)
if ((*it) == pc)
{
m_breakpoints.erase(it);
m_has_breakpoints = !m_breakpoints.empty();
return true;
}
return false;
}
//-----------------------------------------------------------------
// check_breakpoint: Check if breakpoint has been hit
//-----------------------------------------------------------------
bool cpu::check_breakpoint(uint32_t pc)
{
for (std::vector<uint32_t>::iterator it = m_breakpoints.begin() ; it != m_breakpoints.end(); ++it)
if ((*it) == pc)
return true;
return false;
}
//-----------------------------------------------------------------
// valid_addr: Check if the physical memory address is valid
//-----------------------------------------------------------------
bool cpu::valid_addr(uint32_t address)
{
for (memory_base *mem = m_memories; mem != NULL; mem = mem->next)
if (mem->valid_addr(address))
return true;
return false;
}
//-----------------------------------------------------------------
// write: Write a byte to memory (physical address)
//-----------------------------------------------------------------
void cpu::write(uint32_t address, uint8_t data)
{
for (memory_base *mem = m_memories; mem != NULL; mem = mem->next)
if (mem->valid_addr(address))
{
mem->write8(address, data);
return ;
}
error(false, "Failed store @ 0x%08x\n", address);
}
//-----------------------------------------------------------------
// read: Read a byte from memory (physical address)
//-----------------------------------------------------------------
uint8_t cpu::read(uint32_t address)
{
for (memory_base *mem = m_memories; mem != NULL; mem = mem->next)
if (mem->valid_addr(address))
{
uint8_t data = 0;
mem->read8(address, data);
return data;
}
return 0;
}
//-----------------------------------------------------------------
// write16: Write a word to memory (physical address)
//-----------------------------------------------------------------
void cpu::write16(uint32_t address, uint16_t data)
{
address &= ~1;
for (memory_base *mem = m_memories; mem != NULL; mem = mem->next)
if (mem->valid_addr(address))
{
mem->write16(address, data);
return ;
}
error(false, "Failed store @ 0x%08x\n", address);
}
//-----------------------------------------------------------------
// read16: Read a word from memory (physical address)
//-----------------------------------------------------------------
uint16_t cpu::read16(uint32_t address)
{
address &= ~1;
for (memory_base *mem = m_memories; mem != NULL; mem = mem->next)
if (mem->valid_addr(address))
{
uint16_t data = 0;
mem->read16(address, data);
return data;
}
return 0;
}
//-----------------------------------------------------------------
// write32: Write a word to memory (physical address)
//-----------------------------------------------------------------
void cpu::write32(uint32_t address, uint32_t data)
{
address &= ~3;
for (memory_base *mem = m_memories; mem != NULL; mem = mem->next)
if (mem->valid_addr(address))
{
mem->write32(address, data);
return ;
}
error(false, "Failed store @ 0x%08x\n", address);
}
//-----------------------------------------------------------------
// read32: Read a word from memory (physical address)
//-----------------------------------------------------------------
uint32_t cpu::read32(uint32_t address)
{
address &= ~3;
for (memory_base *mem = m_memories; mem != NULL; mem = mem->next)
if (mem->valid_addr(address))
{
uint32_t data = 0;
mem->read32(address, data);
return data;
}
return 0;
}
//-----------------------------------------------------------------
// ifetch32: Read a instruction from memory (physical address)
//-----------------------------------------------------------------
uint32_t cpu::ifetch32(uint32_t address)
{
address &= ~3;
for (memory_base *mem = m_memories; mem != NULL; mem = mem->next)
if (mem->valid_addr(address))
{
uint32_t data = 0;
mem->ifetch32(address, data);
return data;
}
return 0;
}
//-----------------------------------------------------------------
// ifetch16: Read a instruction from memory (physical address)
//-----------------------------------------------------------------
uint16_t cpu::ifetch16(uint32_t address)
{
address &= ~1;
for (memory_base *mem = m_memories; mem != NULL; mem = mem->next)
if (mem->valid_addr(address))
{
uint16_t data = 0;
mem->ifetch16(address, data);
return data;
}
return 0;
}
//-----------------------------------------------------------------
// step: Step through one instruction
//-----------------------------------------------------------------
void cpu::step(void)
{
// Breakpoint hit?
if (m_has_breakpoints && check_breakpoint(get_pc()))
m_break = true;
// Clock peripherals
for (device *dev = m_devices; dev != NULL; dev = dev->device_next)
{
dev->clock();
if (dev->event_irq_raised())
set_interrupt(dev->get_irq_num());
else if (dev->event_irq_dropped())
clr_interrupt(dev->get_irq_num());
}
}
//-----------------------------------------------------------------
// find_device: Find device by name and index
//-----------------------------------------------------------------
device * cpu::find_device(std::string name, int idx)
{
int count = 0;
for (device *d = m_devices; d; d = d->device_next)
{
if (d->get_name() == name)
{
if (idx == count)
return d;
count++;
}
}
return NULL;
}