1
+ {
2
+ "nbformat" : 4 ,
3
+ "nbformat_minor" : 0 ,
4
+ "metadata" : {
5
+ "colab" : {
6
+ "provenance" : [],
7
+ "authorship_tag" : " ABX9TyOkPw5OKBHEeeVu/lIDPZuA" ,
8
+ "include_colab_link" : true
9
+ },
10
+ "kernelspec" : {
11
+ "name" : " python3" ,
12
+ "display_name" : " Python 3"
13
+ },
14
+ "language_info" : {
15
+ "name" : " python"
16
+ }
17
+ },
18
+ "cells" : [
19
+ {
20
+ "cell_type" : " markdown" ,
21
+ "metadata" : {
22
+ "id" : " view-in-github" ,
23
+ "colab_type" : " text"
24
+ },
25
+ "source" : [
26
+ " <a href=\" https://colab.research.google.com/github/DeepthiTabithaBennet/Python_AppliedStatistics/blob/main/Stem%26LeafDisplay_CrossTabulation.ipynb\" target=\" _parent\" ><img src=\" https://colab.research.google.com/assets/colab-badge.svg\" alt=\" Open In Colab\" /></a>"
27
+ ]
28
+ },
29
+ {
30
+ "cell_type" : " markdown" ,
31
+ "metadata" : {
32
+ "id" : " TuCzqvKPvrPE"
33
+ },
34
+ "source" : [
35
+ " **Stem and Leaf Display**"
36
+ ]
37
+ },
38
+ {
39
+ "cell_type" : " code" ,
40
+ "metadata" : {
41
+ "id" : " hcJrM0A5uwjT"
42
+ },
43
+ "source" : [
44
+ " # Written by Deepthi Tabitha Bennet\n " ,
45
+ " \n " ,
46
+ " !pip install stemgraphic"
47
+ ],
48
+ "execution_count" : null ,
49
+ "outputs" : []
50
+ },
51
+ {
52
+ "cell_type" : " code" ,
53
+ "metadata" : {
54
+ "id" : " IoRuQCM7ovW-"
55
+ },
56
+ "source" : [
57
+ " import stemgraphic\n " ,
58
+ " \n " ,
59
+ " data = [23, 56, 76, 34, 87, 56, 98, 12, 46, 98, 9, 34, 56, 76, 35, 12, 84, 36, 45, 23, 12, 87, 3, 78, 94, 47]\n " ,
60
+ " \n " ,
61
+ " stemgraphic.stem_graphic(data, scale = 10)"
62
+ ],
63
+ "execution_count" : null ,
64
+ "outputs" : []
65
+ },
66
+ {
67
+ "cell_type" : " markdown" ,
68
+ "metadata" : {
69
+ "id" : " -fgwBjOQwIRq"
70
+ },
71
+ "source" : [
72
+ " **Cross Tabulation**"
73
+ ]
74
+ },
75
+ {
76
+ "cell_type" : " code" ,
77
+ "metadata" : {
78
+ "id" : " LbkOj8xPx72N"
79
+ },
80
+ "source" : [
81
+ " # importing packages\n " ,
82
+ " import pandas\n " ,
83
+ " import numpy\n " ,
84
+ " \n " ,
85
+ " # creating some data\n " ,
86
+ " a = numpy.array([\" Bad\" , \" Good\" , \" Very Good\" , \" Excellent\" , \" Excellent\" , \" Very Good\" , \" Good\" , \" Bad\" ,\n " ,
87
+ " \t\t\t\t\" Bad\" , \" Good\" , \" Very Good\" , \" Excellent\" , \" Excellent\" , \" Very Good\" , \" Good\" , \" Bad\" ,\n " ,
88
+ " \t\t\t\t\" Bad\" , \" Good\" , \" Very Good\" , \" Excellent\" , \" Excellent\" , \" Very Good\" , \" Good\" , \" Bad\" ,\n " ,
89
+ " \t\t\t\t\" Bad\" , \" Good\" , \" Very Good\" , \" Excellent\" , \" Excellent\" , \" Very Good\" , \" Good\" , \" Bad\" ],\n " ,
90
+ " \t\t\t\t dtype=object)\n " ,
91
+ " \n " ,
92
+ " b = numpy.array([\" 0 - 100\" , \" 100 - 250\" , \" 250 - 500\" , \" 500 - 1000\" , \" 1000 - 2500\" , \" 2500 - 5000\" , \" 5000 - 7500\" , \" 7500 - 10000\" , \" 10000 - 15000\" , \" 15000 - 20000\" , \" 20000 - 30000\" , \" Above 30000\" , \n " ,
93
+ " \t\t\t\t\" 0 - 100\" , \" 100 - 250\" , \" 250 - 500\" , \" 500 - 1000\" , \" 1000 - 2500\" , \" 2500 - 5000\" , \" 5000 - 7500\" , \" 7500 - 10000\" , \" 10000 - 15000\" , \" 15000 - 20000\" , \" 20000 - 30000\" , \" Above 30000\" ,\n " ,
94
+ " \t\t\t\t\" 0 - 100\" , \" 100 - 250\" , \" 250 - 500\" , \" 500 - 1000\" , \" 1000 - 2500\" , \" 2500 - 5000\" , \" 5000 - 7500\" , \" 7500 - 10000\" ],\n " ,
95
+ " \t\t\t\t dtype=object)\n " ,
96
+ " \n " ,
97
+ " # form the cross tab\n " ,
98
+ " pandas.crosstab(b, a, rownames=['Cost (in Rs.)'], colnames=['Rating'])\n "
99
+ ],
100
+ "execution_count" : null ,
101
+ "outputs" : []
102
+ }
103
+ ]
104
+ }
0 commit comments