-
Notifications
You must be signed in to change notification settings - Fork 13.4k
[mlir][spirv] Update argmax-kernel
lit test for convert-to-spirv
. NFC.
#106586
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
base: main
Are you sure you want to change the base?
Conversation
@llvm/pr-subscribers-mlir-spirv @llvm/pr-subscribers-mlir Author: Angel Zhang (angelz913) ChangesThis PR updates the Full diff: https://github.com/llvm/llvm-project/pull/106586.diff 1 Files Affected:
diff --git a/mlir/test/Conversion/ConvertToSPIRV/argmax-kernel.mlir b/mlir/test/Conversion/ConvertToSPIRV/argmax-kernel.mlir
index 5cd1fead2527b1..8b1c3e54cbfb83 100644
--- a/mlir/test/Conversion/ConvertToSPIRV/argmax-kernel.mlir
+++ b/mlir/test/Conversion/ConvertToSPIRV/argmax-kernel.mlir
@@ -5,43 +5,50 @@ module attributes {
spirv.target_env = #spirv.target_env<#spirv.vce<v1.3, [Shader, Groups, GroupNonUniformArithmetic, GroupNonUniformBallot], [SPV_KHR_storage_buffer_storage_class]>, #spirv.resource_limits<>>
} {
// CHECK-LABEL: spirv.module @{{.*}} Logical GLSL450
- // CHECK-DAG: spirv.GlobalVariable @[[$LOCALINVOCATIONIDVAR:.*]] built_in("LocalInvocationId") : !spirv.ptr<vector<3xi32>, Input>
+ // CHECK-DAG: spirv.GlobalVariable @[[$LOCALINVOCATIONIDVAR:.*]] built_in("LocalInvocationId") : !spirv.ptr<vector<3xi32>, Input>
+ // CHECK-DAG: spirv.GlobalVariable @[[$SUBGROUPSIZE:.*]] built_in("SubgroupSize") : !spirv.ptr<i32, Input>
// CHECK-LABEL: spirv.func @argmax
- // CHECK-SAME: %[[ARG0:.*]]: !spirv.ptr<!spirv.struct<(!spirv.array<4 x f32, stride=4> [0])>, StorageBuffer>
- // CHECK-SAME: %[[ARG1:.*]]: !spirv.ptr<!spirv.struct<(!spirv.array<1 x i32, stride=4> [0])>, StorageBuffer>
+ // CHECK-SAME: %[[ARG0:.*]]: !spirv.ptr<!spirv.struct<(!spirv.array<128 x f32, stride=4> [0])>, StorageBuffer> {spirv.interface_var_abi = #spirv.interface_var_abi<(0, 0)>}
+ // CHECK-SAME: %[[ARG1:.*]]: !spirv.ptr<!spirv.struct<(!spirv.array<1 x i32, stride=4> [0])>, StorageBuffer> {spirv.interface_var_abi = #spirv.interface_var_abi<(0, 1)>}
+ // CHECK-SAME: %[[ARG2:.*]]: !spirv.ptr<!spirv.struct<(!spirv.array<1 x i32, stride=4> [0])>, StorageBuffer> {spirv.interface_var_abi = #spirv.interface_var_abi<(0, 2)>}
gpu.module @kernels {
- gpu.func @argmax(%input : memref<4xf32>, %output : memref<i32>) kernel
+ gpu.func @argmax(%input : memref<128xf32>, %output : memref<1xi32>, %total_count_buf : memref<1xi32>) kernel
attributes {spirv.entry_point_abi = #spirv.entry_point_abi<workgroup_size = [32, 1, 1]>} {
// CHECK: %[[C0:.*]] = spirv.Constant 0 : i32
// CHECK: %[[C1:.*]] = spirv.Constant 1 : i32
- // CHECK: %[[C32:.*]] = spirv.Constant 32 : i32
+ // CHECK: %[[ADDRESSSUBGROUPSIZE:.*]] = spirv.mlir.addressof @[[$SUBGROUPSIZE]]
+ // CHECK: %[[SUBGROUPSIZE:.*]] = spirv.Load "Input" %[[ADDRESSSUBGROUPSIZE]]
// CHECK: %[[ADDRESSLOCALINVOCATIONID:.*]] = spirv.mlir.addressof @[[$LOCALINVOCATIONIDVAR]]
// CHECK: %[[LOCALINVOCATIONID:.*]] = spirv.Load "Input" %[[ADDRESSLOCALINVOCATIONID]]
// CHECK: %[[LOCALINVOCATIONIDX:.*]] = spirv.CompositeExtract %[[LOCALINVOCATIONID]]{{\[}}0 : i32{{\]}}
- // CHECK: %[[AC0:.*]] = spirv.AccessChain %[[ARG0]][%[[C0]], %[[LOCALINVOCATIONIDX]]] : !spirv.ptr<!spirv.struct<(!spirv.array<4 x f32, stride=4> [0])>, StorageBuffer>, i32, i32
+ // CHECK: %[[AC:.*]] = spirv.AccessChain %[[ARG2]][%[[C0]], %[[C0]]] : !spirv.ptr<!spirv.struct<(!spirv.array<1 x i32, stride=4> [0])>, StorageBuffer>, i32, i32
+ // CHECK: %[[LOAD:.*]] = spirv.Load "StorageBuffer" %[[AC]] : i32
+ // CHECK: %[[AC0:.*]] = spirv.AccessChain %[[ARG0]][%[[C0]], %[[LOCALINVOCATIONIDX]]] : !spirv.ptr<!spirv.struct<(!spirv.array<128 x f32, stride=4> [0])>, StorageBuffer>, i32, i32
// CHECK: %[[LOAD0:.*]] = spirv.Load "StorageBuffer" %[[AC0]] : f32
+ // CHECK: %[[UB:.*]] = spirv.UDiv %[[LOAD]], %[[SUBGROUPSIZE]] : i32
// CHECK: %[[FUNC0:.*]] = spirv.Variable : !spirv.ptr<i32, Function>
// CHECK: %[[FUNC1:.*]] = spirv.Variable : !spirv.ptr<f32, Function>
- %cst_0_idx = arith.constant 0 : index
- %cst_1_i32 = arith.constant 1 : i32
- %cst_1_idx = arith.constant 1 : index
- %cst_32 = arith.constant 32 : i32
- %num_batches = arith.divui %cst_1_i32, %cst_32 : i32
- %tx = gpu.thread_id x
- %tx_i32 = index.castu %tx : index to i32
- %ub = index.castu %num_batches : i32 to index
+ %idx_0 = arith.constant 0 : index
+ %idx_1 = arith.constant 1 : index
+ %lane_count_idx = gpu.subgroup_size : index
+ %lane_count_i32 = index.castu %lane_count_idx : index to i32
+ %lane_id_idx = gpu.thread_id x
+ %lane_id_i32 = index.castu %lane_id_idx : index to i32
+ %total_count = memref.load %total_count_buf[%idx_0] : memref<1xi32>
%lane_res_init = arith.constant 0 : i32
- %lane_max_init = memref.load %input[%tx] : memref<4xf32>
+ %lane_max_init = memref.load %input[%lane_id_idx] : memref<128xf32>
+ %num_batches_i32 = arith.divui %total_count, %lane_count_i32 : i32
+ %num_batches_idx = index.castu %num_batches_i32 : i32 to index
// CHECK: spirv.mlir.loop {
// CHECK: spirv.Branch ^[[HEADER:.*]](%[[C1]], %[[C0]], %[[LOAD0]] : i32, i32, f32)
// CHECK: ^[[HEADER]](%[[INDVAR0:.*]]: i32, %[[INDVAR1:.*]]: i32, %[[INDVAR2:.*]]: f32):
- // CHECK: %[[SLT:.*]] = spirv.SLessThan %[[INDVAR0]], %[[C0]] : i32
+ // CHECK: %[[SLT:.*]] = spirv.SLessThan %[[INDVAR0]], %[[UB]] : i32
// CHECK: spirv.BranchConditional %[[SLT]], ^[[BODY:.*]], ^[[MERGE:.*]]
// CHECK: ^[[BODY]]:
- // CHECK: %[[MUL:.*]] = spirv.IMul %[[INDVAR0]], %[[C32]] : i32
+ // CHECK: %[[MUL:.*]] = spirv.IMul %[[SUBGROUPSIZE]], %[[INDVAR0]] : i32
// CHECK: %[[ADD:.*]] = spirv.IAdd %[[MUL]], %[[LOCALINVOCATIONIDX]] : i32
- // CHECK: %[[AC1:.*]] = spirv.AccessChain %[[ARG0]][%[[C0]], %[[ADD]]] : !spirv.ptr<!spirv.struct<(!spirv.array<4 x f32, stride=4> [0])>, StorageBuffer>, i32, i32
+ // CHECK: %[[AC1:.*]] = spirv.AccessChain %[[ARG0]][%[[C0]], %[[ADD]]] : !spirv.ptr<!spirv.struct<(!spirv.array<128 x f32, stride=4> [0])>, StorageBuffer>, i32, i32
// CHECK: %[[LOAD1:.*]] = spirv.Load "StorageBuffer" %[[AC1]] : f32
// CHECK: %[[OGT:.*]] = spirv.FOrdGreaterThan %[[LOAD1]], %[[INDVAR2]] : f32
// CHECK: %[[SELECT0:.*]] = spirv.Select %[[OGT]], %[[ADD]], %[[INDVAR1]] : i1, i32
@@ -55,13 +62,13 @@ module attributes {
// CHECK: }
// CHECK-DAG: %[[LANE_RES:.*]] = spirv.Load "Function" %[[FUNC0]] : i32
// CHECK-DAG: %[[LANE_MAX:.*]] = spirv.Load "Function" %[[FUNC1]] : f32
- %lane_res, %lane_max = scf.for %iter = %cst_1_idx to %ub step %cst_1_idx
+ %lane_res, %lane_max = scf.for %iter = %idx_1 to %num_batches_idx step %idx_1
iter_args(%lane_res_iter = %lane_res_init, %lane_max_iter = %lane_max_init) -> (i32, f32) {
%iter_i32 = index.castu %iter : index to i32
- %mul = arith.muli %cst_32, %iter_i32 : i32
- %idx_i32 = arith.addi %mul, %tx_i32 : i32
+ %mul = arith.muli %lane_count_i32, %iter_i32 : i32
+ %idx_i32 = arith.addi %mul, %lane_id_i32 : i32
%idx = index.castu %idx_i32 : i32 to index
- %elem = memref.load %input[%idx] : memref<4xf32>
+ %elem = memref.load %input[%idx] : memref<128xf32>
%gt = arith.cmpf ogt, %elem, %lane_max_iter : f32
%lane_res_next = arith.select %gt, %idx_i32, %lane_res_iter : i32
%lane_max_next = arith.select %gt, %elem, %lane_max_iter : f32
@@ -72,12 +79,12 @@ module attributes {
// CHECK: %[[OEQ:.*]] = spirv.FOrdEqual %[[LANE_MAX]], %[[SUBGROUP_MAX]] : f32
// CHECK: %[[BALLOT:.*]] = spirv.GroupNonUniformBallot <Subgroup> %[[OEQ]] : vector<4xi32>
// CHECK: %[[BALLOTLSB:.*]] = spirv.GroupNonUniformBallotFindLSB <Subgroup> %[[BALLOT]] : vector<4xi32>, i32
- // CHECK: %[[EQ:.*]] = spirv.IEqual %[[LOCALINVOCATIONIDX]], %[[C1]] : i32
+ // CHECK: %[[EQ:.*]] = spirv.IEqual %[[BALLOTLSB]], %[[LOCALINVOCATIONIDX]] : i32
%subgroup_max = gpu.subgroup_reduce maximumf %lane_max : (f32) -> (f32)
%eq = arith.cmpf oeq, %lane_max, %subgroup_max : f32
%ballot = spirv.GroupNonUniformBallot <Subgroup> %eq : vector<4xi32>
%lsb = spirv.GroupNonUniformBallotFindLSB <Subgroup> %ballot : vector<4xi32>, i32
- %cond = arith.cmpi eq, %cst_1_i32, %tx_i32 : i32
+ %cond = arith.cmpi eq, %lsb, %lane_id_i32 : i32
// CHECK: spirv.mlir.selection {
// CHECK: spirv.BranchConditional %[[EQ]], ^[[TRUE:.*]], ^[[FALSE:.*]]
@@ -89,7 +96,7 @@ module attributes {
// CHECK: spirv.mlir.merge
// CHECK: }
scf.if %cond {
- memref.store %lane_res, %output[] : memref<i32>
+ memref.store %lane_res, %output[%idx_0] : memref<1xi32>
}
// CHECK: spirv.Return
|
convert-to-spirv
argmax-kernel
lit test for convert-to-spirv
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
LGTM. Thanks for fixing this!
argmax-kernel
lit test for convert-to-spirv
argmax-kernel
lit test for convert-to-spirv
. NFC.
This seems pretty large as a unit-test for conversion, can you elaborate on this test? |
This is effectively an integration tests for the convert-to-spirv pass. Unit tests are placed in each dialect conversion pass. Here want to make sure that a small complete kernel can be converted like we'd expect, including the interaction between dialects, control flow, type legalization, memory operations, etc. Historically, we saw failures in some combination of these like indices not being properly legalized. We picked argmax because it's a very simple example of code that does something that's not completely contrived: it scans the input buffer, loops over the content, and uses a spirv op as an 'intrinsic' for subgroup operations. We do not plan to add more of similar tests unless we can demonstrate that they fill some actual gaps in the coverage. We had a short-lived e2e tests for argmax, but that was a mistake -- this is better suited for a LIT test IMO. |
This is a very weird way to test though: seems completely arbitrary to me and not the kind of unit-tests I expect to see at all. |
This PR updates the
argmax-kernel
lit test underConvertToSPIRV
(for demonstrating the ability of using SPIR-V ops among other higher-level dialects). The original test was landed in #105010 but had a few mistakes, including using constants for variables like subgroup size and total number of elements in the input, etc. The PR fixed them so that this kernel module could potentially be used for integration tests. However, adding more integration tests is not planned at the moment.