Skip to content

Add 2x4 structured sparsity model to Model Garden #828

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 1 commit into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -365,6 +365,13 @@ def testPrunesSingleLayer_ReachesTargetSparsity(self, layer_type):
'input_shape': [(8)],
'm_by_n': (1, 2),
},
{
'testcase_name': 'DepthwiseConv_2by4',
'layer_type': tf.keras.layers.DepthwiseConv2D,
'layer_arg': [3],
'input_shape': (7, 7, 32),
'm_by_n': (2, 4),
},
)

def testMbyNSparsityPruning_SupportedLayers(self,
Expand Down Expand Up @@ -392,18 +399,45 @@ def testMbyNSparsityPruning_SupportedLayers(self,
test_utils.assert_model_sparsity_m_by_n(self, model, m_by_n)
self._check_strip_pruning_matches_original(model, sparsity_ratio)

def testSparsityPruningMbyN_NonSupportedLayers(self):
"""Check layer that is not supported for m by n sparsity."""
self.params.update({'sparsity_m_by_n': (2, 4)})

model = keras.Sequential()
layer_type = tf.keras.layers.SeparableConv1D
args, input_shape = ([4, 3], (3, 6))
def testSparsityPruningMbyN_SupportedSubclassLayers(self):
"""Check subclass layer that is supported for m by n sparsity."""
m_by_n = (2, 4)
self.params.update({'sparsity_m_by_n': m_by_n})

class SubclassLayer(tf.keras.layers.Layer):

def __init__(self):
super(SubclassLayer, self).__init__()
self.conv1 = tf.keras.layers.Conv2D(
2, 3, activation='relu', padding='same', input_shape=[7, 7, 3])
self.conv2 = tf.keras.layers.DepthwiseConv2D(3)
self.flatten = keras.layers.Flatten()
self.dense = layers.Dense(10, activation='sigmoid')

def call(self, inputs):
x = self.conv1(inputs)
x = self.conv2(x)
x = self.flatten(x)
x = self.dense(x)
return x

inputs = keras.Input(shape=(7, 7, 3))
outputs = SubclassLayer()(inputs)
model = keras.Model(inputs, outputs)
with self.assertRaises(ValueError):
model.add(
prune.prune_low_magnitude(
layer_type(*args), input_shape=input_shape, **self.params))
model = prune.prune_low_magnitude(model, **self.params)

model.compile(
loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])

test_utils.assert_model_sparsity(self, 0.0, model)
model.fit(
np.random.randn(*self._batch(model.input.get_shape().as_list(), 32)),
np.random.randn(*self._batch(model.output.get_shape().as_list(), 32)),
callbacks=[pruning_callbacks.UpdatePruningStep()])

test_utils.assert_model_sparsity_m_by_n(self, model, m_by_n)
self._check_strip_pruning_matches_original(model, 0.5)

@parameterized.parameters(prune_registry.PruneRegistry._RNN_LAYERS -
{keras.layers.RNN})
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -129,13 +129,6 @@ def __init__(self,
self.sparsity_m_by_n = None

if sparsity_m_by_n:
# Sparsity m_by_n can be applied only to Conv2D and Dense layers.
if (not isinstance(layer, tf.keras.layers.Conv2D) and
not isinstance(layer, tf.keras.layers.Dense)):
raise ValueError('Structural sparsity M by N is applicable only '
'to `Conv2D` and `Dense` layers. You passed: '
'{input}'.format(input=layer.__class__))

self.sparsity_m_by_n = convert_to_tuple_of_two_int(
sparsity_m_by_n, 'sparsity_m_by_n')

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -156,12 +156,18 @@ def testCollectPrunableLayers(self):

self.assertLen(pruning_wrapper.collect_prunable_layers(self.model), 5)

def testConv3DNonPrunableWithSparsityMbyN(self):
def testConv3DWeightNotPrunedWithSparsityMbyN(self):
layer = keras.layers.Conv3D(2, 3)
inputs = keras.layers.Input(shape=(4, 28, 28, 28, 1))
_ = layer(inputs)
with self.assertRaises(ValueError):
pruning_wrapper.PruneLowMagnitude(layer, sparsity_m_by_n=(2, 4))
self.model.add(Prune(layer, sparsity_m_by_n=(2, 4)))

pruned_layers = pruning_wrapper.collect_prunable_layers(self.model)

self.assertLen(pruned_layers, 1)
# Only rank-2 (e.g, Conv2D) or rank-4 (e.g, Dense) weight are pruned with
# M-by-N sparsity.
self.assertLen(pruned_layers[0].pruning_vars, 0)


if __name__ == '__main__':
Expand Down